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GENERAL INTRODUCTION

A recurring problem in many 'fields, especially diffraction optics,

is the reconstruction of a Fourier transform pair g,G from partial .

data on either or both functions. Considerable effort has been expended Al

in the development of algorithms for its solution; although there have

been some successes, the problem has generally proved to be difficult.

Of particular importance to the RADC effort is the retrieval of wavefront .

aberrations from the measured point spread function of an optical system.

Discussions with several investigators who have employed their own

algorithms to these problems have indicated a sort of hit-or-miss attitude O

with respect to their behavior in various situations. Sometimes the

particular algorithm works and sometimes it fails when.the data are

noisy. With the possible exception of Youla's recent study, there are

really no serious attempts to understand the stability, rate of convergence,

etc. with respect to noise in the measurements.

The present contract effort was devoted to the development and - -

mathematical understanding of new algorithms based upon numerical functional

analysis which are robust with respect to noisy data. The basic material

is contained in the two sections entitled: .

1. Atgothw 6o,% teconAt.uction o6 paotia.U known, bandtited

Foai.eA tAanh6om pai'L jom noL,6y data: 1, the p4ototypZca.

.i.nea p.b em.

. ..



- . .-. ~-'-------. ................- ...

11. Atgo ithms 6o& teconst~uction o6 pataatty~ known, bandti~miterd

Fouer tranzform p" from noizy data: 11, the nonti~neau

probten& o6 phaAe &etAievat. "_i

Both sections are very mathematical and employ mathematics not commonly ' .--

i ~encountered by optical physicist and engineers. For this reason a -::';:

summarizing section has been included; it is the first section in the

report and is entitled

Atgo ithra 6o& ,,econ,6t~metion o6 paiat known, bandtmied

Foua,, t~ a 6o,'u p"~., 64om noia data. .i "

IU
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1. INTRODUCTION

A recurring problem in many fields (especially diffraction optics,

electron microscopy, and X-ray diffraction) is the reconstruction of a Fourier

transform pair g,G from partial data on either or both functions. Con-

siderable effort has been expended in the development of algorithms for its

solution; although there have been some successes, the problem has generally

proved to -e difficult.

The canonical examples for such reconstructions are:

ExampZe 1, Extrapoation o6 Band-Limited SignaZ6. Given a noisy measure-

ment g of g on an interval A- [al1a2] and the knowledge that G

vanishes outside the bounded interval B- [b11b2], reconstruct g and G on

the entire real line.

Example 1 is the archetypical linear problem in transform reconstruction.

A number of algorithms have been proposed for its solution, either by iterative

means: Gerschberg and Saxton 11], Papoulis 121, Youla [3] or by direct means:

Cadzow [4], Sabri and Steenaart [5].

Exampte 2, The Phone PAobZem. Given a noisy measurement m of Igi on

an interval A and the knowledge that G vanishes outside the bounded inter-

val B, reconstruct g and G on the entire real line.

Example 2 has been of theoretical interest for some time; see for example

Burge, Fiddy, Greenway, and Ross [6]; however in this most general form it has

proved intractable. Numerical solutions obtained in particular cases have

done so by (sensibly) incorporating further knowledge of g and G. Two

2
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such examples are: ]
Exampte 2a, The Two Moduti Probtem. Given noisy measurements m and n ...

of Igl on A and IGI on B, and the knowledge that G vanishes identic-

ally outside of B, reconstruct g,G over the entire real line.

Example 2b, The Phase Problem with Nonnegativity ConsZtaint5. Given a

noisy measurement m of Igi on A and the knowledge that G is nonnegative

over B and vanishes identically outside B reconstruct g,G over the real

line.

Gerschberg and Saxton E1] developed a widely used algorithm for Example

2a; almost all the iterative algorithms for the solution of the general recon-

struction problem are suitably modified versions of this particular case. The

Gerschberg-Saxton algorithm (hereafter denoted as the GS algorithm) in its

general form is essentially the steepest descent algorithm with unit step

length and so is first order [7]. In [8], the GS algorithm is successfully

applied to a problem of the type in Example 2b. An alternative second order

algorithm, based on Newton's method, has been proposed by Barakat and

Newsam [9].

The canonical examples presented are simple in form, nevertheless they

contain the salient features that make other, more complicated, problems in-

tractable. The font of all difficulties is that the reconstruction problem

is ill-posed, and badly ill-posed at that. The original definition of a well

posed problem is due to Hadamard 110].

3



e~inition. A problem is well posed if the solution

1. exists

2. is unique

3. depends continuously on the data.

If a problem violates any of these conditions, it is ill-posed. Each of the I

model problems violates at least one of these criteria. The literature, e.g.

[11-13] has focussed on violations of uniqueness, however it is our contention

that violation of condition 3 is the cause of the most of the problems en- - .

countered in numerical solutions; in particular it accounts for the extreme

sensitivity of such solutions to small perturbations in the data.

The purpose of this paper is to summarize for the optical community the

detailed analysis of transform reconstructions developed in 114-16]. These

three references contain a detailed mathematical treatment of ill-conditioning

in transform recovery problems with emphasis on the-implications for numerical

algorithms. The theory is dimem4ion independent, although the supporting

numerical calculations are restricted to one-dimensional problems. We hope to

present two-dimensional calculations in the near future.

In order to present the results the following notation will be used. If

DC3RN  then L 2(D) denotes the space of square integrable, complex valued

functions over D with norm 011. and inner product (,-). If T is any

2 N
set in L (CR) then the projection P onto T is defined by

T

y = PTx - y E T and By - xH = inf 1lz-xII (1.1)
zET

4
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2In the special case when T-L (D); PL2 will be abbreviated to P P
L (D) D D

has the form

G (w) w E D
(PDG)(w) = . (1.2)0 othe rwi se

2 N 2NThe Fourier transform : L (1R) - L (MR) is defined to be

A A f2riv-w
g(v) = (9G) (W) = je G(w) I . (1.3)

If D and E are bounded subsets of 3RN then the operator P DPE will be

called a finite Fourier transform (fFT). Finally the interval [-cc] shall

be denoted by cI; the projection PCI shall be abbreviated to P and the

fFT P ,rP is represented by r.
C C C

The next section of the paper presents a survey of known results on

example 1, which may be shown to be equivalent to inversion of the operator

1 1/2Jr where c=-f(al-a) (bl-b)]. Of particular importance is the rela-
c 2 1 2 1 2

tion between the ill-conditioning of problem 1 and the singular value decom-

position (SVD) of Jc; and how the two ideas are combined in inversion by
c

filtered SVD. In Section 3 local ill-conditioning of the nonlinear phase

retrieval problems is described in terms of that of the fFT; and it is con-

trasted with the global ill-conditioning due to the possibility of multiple

exact solutions. Section 4 presents a simple generalization of the GS algo-

rithm, tailored to overcome some of this ill-conditioning; together with a

review of its convergence properties. In Section 5 extensions of this

: :, - . i;:-~ ;: .;.-. ; " - : . 2 ' ,: •:- .. . . . ,...: . . ...:.. Z .. .I



algorithm are discussed, Section 6 contains a btie6 survey of numerical

results (in the context of optical diffraction theory) on the-relative

behavior of these algorithms, followed by some concluding remarks.

" .
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2. THE LINEAR PROBLEM

.,----- - -. ,-°1

The extrapolation problem of example 1 requires for its solution inversion

of the linear integral equation

P9PBG =PAg . (2.1) .

Since A and B are bounded sets P APB is a compact linear integral

operator and Eq. (2.1) is a Fredholm integral equation of the first kind. -

Inversion of such an equation is the prototypical linear ill-posed problem. .

The ill-posed nature of the problem is exposed in the construction of

the solution using the singular value decomposition (SVD) of P A9P As
A B* s-

outlined in Baker 117], a compact linear operator has an SVD {fiOi}i
consisting of functions i and ip. and nonnegative real numbers a. with

the properties that

1. {0i i and { 1  are complete sets of orthonormal functions

i2 2
-or (A) and L (B), respectively.

ii. ai > 0 . + I and lima c. 0.
iii. P +A1p Vi . 12.2.(2.2)

- a . -

Expansion of G and PAg as sums of singular functions

Gg b2P. -Ag- a, (2.3)

give a frmalsolution to Eq. (2.1) by equating coefficients, i.e.,

PA B g J .b. - a. . (2.4)

A B1

7.
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This solution illustrates the ill-conditioning in the problem. For instance

if - is a perturbation of g such that I

P " with < -a C (2.5)
A 1

then it is possible that the error occurs in a high frequency (large i) com-

ponent of P g , so that a perturbation of size cac. is induced in G. For

fixed E this perturbation grows arbitrarily large as i-. Thus Eq. (2.1) " •

fails condition 3 of Hadamard's definition with respect to data perturbation

in g. A similar argument, but one that is rarely made, shows that the

equation is also ill-posed with respect to changes in the model, i.e. perturba-

tions of the operator PArP

The above arguments show that the whole solution G cannot be recovered

to within any specified accuracy given uncertainty in the data. Therefore

the natural question to ask next is: "How large a part of the solution can be

recovered to within a desired accuracy in the presence of noise?" A partial

answer lies in the idea of the 6en-tiat dimention N(6, £IC2) of the problem;

loosely speaking this is the maximum number of parameters in a description of

the solution that can be determined to within an accuracy 6, given errors

E1 in PAg and £2 in PA PB. (The latter error includes discretization
*C AA~P

and roundoff errors as well as those arising from an imperfect mathematical

model of the real world.)

A more precise definition of the essential dimension as the maximum

dimension of any subspace U for which the associated projection PUG of

the solution can be accurately calculated 116,183 shows that it may be

86 " !



expressed in terms of the singular values. The optimm subspace is the span

of the first N(6,cI,C2 ) singular functions. This analysis suggests that

Eq. (2.1) be solved by filtered SVD. This algorithm was introduced by Hanson

[19] in which G is expressed as the sum

G = p(a.,o.,y) i  (2.6) "

where p is a filter function with the general form

R(a,o,y) - 0-1 for large a (2.7)

- 0 for small a

and y is a parameter that incorporates knowledge of data errors and the

desired solution accuracy.

Filtrrs come in many forms. For instance, if the error in g is such

that UPA A £1 the model error C2 is negligible and the projection

P G is to be determined to within an accuracy 6 (i.e. OP G-PUGII 6); then
U U

the filter associated with the essential dimension is

a-I

. (a~a,y) - if G -Y
(2.8)

- 0 ;< .

where YE 6 This cutoff filter is a special case lq =) of the class "
1i

* of filters

p(a,o,Y) - (2.9)
0q+l + Y F I

The utility of the theory of the essential dimension lies in its ability i

to predict the size and general form of components of the solution that may be

9
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accurately recovered in the presence of noise, before numerical calculations

are undertaken. Such predictions are therefore most useful in deciding on

the size and form of an appropriate discretization for use in numerical

solutions. The theory is easily applied to transform recovery problems due to

the large body of knowledge about the SVD of the finite Fourier transform

(fFT) developed by Landau, Pollak, Slepian and Walom [20-263. The next

theorem gives a brief summary of those results that are most useful in the

present problem.

Theo0tcm 1. i. If D and E are bounded subsets of 3N with volumes

(DI and IE, and surface areas laDi and 1aEI, then, for large c, the

number n(c,a) of singular values of PCD 9 E greater than a is given _

-approximately by

n(c,c) ~I DIEIc I D Ejc 2 N- 2 log (Q- - -l)log c+o(C 2 N- 3  (2.10)

- where cD is the set {cd: dE D) and y is a constant independent of c,D

and E.

ii. In one dimens-ion let a be the n-th singular value of Jr. Thenn c

if b is fixed, c arbitrary and n is determined by

n - 4c2 + L log(2c 2-T1 (2.11)

where [] denotes the nearest integer to OL, then
eb )

lima - (1+ -1/2 (2.12)
n* 

n--

10
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iii. The singular functions of .V are the eigenfunctions of the 1Ci

Sturm-Liouville equation

2 22 2((l-t2) ')' + (-4r c t ) = 0 (2.13)

where solutions are required to be uniformly bounded over the entire real line.

The theorem indicates that the singular values a of P DPE have a
n D E

steplike distribution; a ~1 for small n, a decays exponentially for large
n n

n, and the change from an -1 to exponential decay occurs over an interval of

width proportional to c 2N-2log c centered on c 2D1 .Et. This in turn

implies that the essential dimension is approximately c 2DJelEl and is

almost independent of noise: The exponential decay of o implies that then

essential dimension N=N(6,C11,2 ) is determined by an equation of the form

-N .c-1 so that the noise level C1 must be reduced by a multiplicative

factor to give an additive increase in N.

A second consequence is that the low order singular functions are solu-

tions to a Sturm-L.ouville problem and therefore are analytic and slowly

varying. Thus they will be well approximated by a discretization based on

smooth functions. This was experimentally verified in [14], where a number - I
of different discretizations of jr were calculated for varying values of c.

The results indicated that discretizations based on Gaussian quadrature or

Galerkin approximations using Legendre polynomials required only N +O(log N)
7

parameters to accurately approximate the first N singular functions of J.

In contrast Galerkin approximations based on piecewise constant or trigcno-

metric functions appeared to require at least aN parameters to achieve the

S
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same accuracy, where a; 3. The difference may be explained by noting that

the expansion of an analytic function on [-cc] in terms of.Legendre poly- .

nomials will have rapidly decaying coefficients; whereas an expansion in terms

of piecewise continuous functions will converge only slowly. Moreover although

* trigonometric functions are themselves smooth, they do not approximate the

original function but rather a periodic extension of it outside of [-c,c].

* This extension. is likely to have discontinuities at the endpoints ±c, so that

its Fourier series is slowly convergent. This was observed in approximations

of the singular functions of jc where they had the worst performance of the

discretizbtions examined; therefore their use is not recommended in transform

recovery.

To conclude the section an example of solution of problem 1 by filtered .

SVD is presented, see [141 for the details and other examples. The equation

G (P g) (v) + c1(v) (2.14)
c c

was solved numerically, where

(v) 2 sin "v (2.15)
,TVj

This is the point spread function of an infocus, aberration free slit aperture.

The presence of noise was simulated by the term CP(v) with Wv) a random

variable uniformly distributed over [-1,1 and c a control of the magni-

tude of the noise. The parameter values cl and c- .03 were chosen, a

Galerkin approximation based on 80 piecewise constant functions was used to

discretize the problem, and the resulting finite system was solved by filtered

SVD using the filter of Eq. (2.9) with q-2 and y- .01.

1-
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Figure 1 shows two approximate solutions G calculated from noise data

along with the true solution for noiseless data

G(w) = 2(1- Ii) • (2.16)

Figure 2 shows the extrapolation AG of one particular perturbation P ..

Because of the symnetry of the test functions each graph is for negative

values of the argument only.

The graphs show that G is a good approximation to the true solution G,

except at the origin where the smooth singular functions cannot reconstruct

the discontinuity in slope. Since this discontinuity dominates the far field

behavior of .JG, the extrapolation is not as accurate as the reconstruction.

1." ....-- i.



3. SOURCES OF ILL-CONDITIONING IN PHASE RETRIEVAL

The previous discussion of ill-conditioning in the linear problem gives

new insight into why the nonlinear problem of phase retrieval is ill-posed.

Previous examinations of the problem have concentrated on showing that the
,e

problem is ill-posed due to violations of conditions 1 and 2 of Hadamard's.

That it is also ill-posed due to violations of condition 3, and the implica-

tions such violations have for numerical solutions, has not been noted previcus

to [15). We therefore present a brief summary of all three possible sources of

ill-conditioning and their effects on the behavior of algorithms for numerical

solution of such problems.

Violations of condition 1 are not in themselves important for the following

reason. Phase retrieval is a model of a real world phenomenon known to exist.

Therefore failure of the model to have a solution does not imply that the real

physical quantity does not exist; so nonexistence must be due either to an

inaccurate model or to noisy data. Both of these possibilities are simply

extreme examples of discontinuous dependence of the solution on the data;

therefore violations of condition 1 are subsumed under violations of

condition 3.

Nonuniqueness, however, is an important source of ill-conditioning. The

precise form of all possible solutions to the one-dimensional (l-D) phase

problem appears to have been first determined by Akutowicz [27,28) and has

been independently rediscovered by a number of other authors, e.g. [29,301.

Their results imply that the phase problem in I-D has uncountably many

14
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solutions. In 131), see also 115], we show that these results may be extended

to two (and higher) dimensions to give necessary conditions on the form of

multiple solutions for higher dimensions; these conditions imply that multiple

solutions are significantly less likely than in 1-D.

The I-D results depend on noting that any solution g(v) is an analytic . ."-

function of exponential growth: this follows from the fact that g is the

transform of a function G with bounded support and the Paley-Wiener theorem.

Therefore g(v) has a Hadamard factorization 132) of the form

g(v) - jg(0) Ie i(a+sv) 1 ( - (3.1)
k=l Vk

where ct and B are real constants and {v i are the countably many
k k=l

zeroes of g. Then any other solution must be of the form

i (a+sv) . ..
g(v) = e B(v)g(v) , CIR (3.2)

*. where B(v) is a finite or infinite product of Blaschke factors, i.e.

V-v*
B(v) = TI B (v) where B lV) = ( (3.3)

i=l k Zk v~vk

Furthermore if 8=0 then any j given by Eq. (3.2) is indeed a solution.

Thus alternative exact solutions are basically generated by "flipping" zeroes

of g(v) to their complex conjugates. Since there are an infinite number of

zeroes there are also an infinite number of exact solutions to a I-D phase

retrieval problem.

is1

15

. .. i * . . . *.- . * . * * .-. ..'T .'. *. .- •.• ... . .-... "
-- .- Li •T' .-Ti- . ." -"" TT- .21-: .i2 1211.2L..i-.. L°2 .. . * i. .- . i 12L ." - L T" "" " i



T K 47

If the exact solutions were few and well separated, and the phase

retrieval problem well-posed in a neighborhood of each zero, then any

standard numerical algorithm would perform satisfactorily. However, as noted

Nby Napier 133), any N zeroes may be flipped or not flipped in 2 different

combinations, giving 2N  different solutions. Therefore there is a very

large number of possible solutions, in fact an uncountable infinity of such

solutions. Furthermore, for reasonable functions G(w), any infinite product

B(z) of Blaschke factors will converge, i.e. B(z) = lim BN (z) where BN(Z)

is a product of N Blaschke factors. Since each finite product corresponds

to a possible solution, it follows that the set of solutions has limit points.

Any numticat atgorLthm wLU have grat difficufty in the neighboJiod o6

.6uch poi .

However the situation improves markedly in N; 2 dimensions. An exten-

sion of the arguments for N = 1 shows that the zeroes of any alternative

solution g are the zeroes, or complex conjugates of the zeroes, of g. But,

as g is an entire function of N complex variables, its zeroes form an

analytic set X of dimension N-1 134]. This set X is essentially the

union of M connected, N-1 dimensional, analytic manifolds Xi . Therefore,

if part of a manifold Xi  is flipped to form the zeroes of g, all of Xi

must be flipped to ensure that the zeroes of g also form an analytic set
P M-P

X; so X will be of the form U X. U U X* . But in two or more
k=l ik P=i 1 1

dimensions the set X is likely to be irreducible, i.e. M= 1, in the same

way that almost all polynomials of two or more variables are irreducible.

Therefore at most two possible solutions with zeroes X and X* can be

16
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formed, and the solution is essentially unique.

Therefore, in the simplest model problem, ill-conditioning due to non-

uniqueness is likely to be a severe problem in one-dimensional problems, or

in problems that are essentially one-dimensional (e.g. those with radial

symmetr, considered in [35]); but in higher dimensions it should have signi-

ficantly less effect. The situation is less well understood if side condi-

tions are imposed. For instance if both g and G are analytic then the

solution of example 2a is essentially unique, but for arbitrary G, nonunique

solutions have been constructed (see [11] for a review). Even less is known

about the effect of positivity.
0v

However, it should be noted that for all three problems there can be

parasitic solutions due to symmetries, etc. For example, if G vanishes

outside of the interval dI where d < c then translations G of G will

still be within cI and will have transforms g which have the same modulus

as g over cl. ,

Finally we show that example 2 is locally ill-conditioned in that it

violates condition 3. The phase retrieval problem may be recast as requiring

the solution of the nonlinear equation

2 2
91(G) m 97: L (B) L (A) (3.4)

where 9 is the composite operator Y oP ArP and
1lA B

2 2
g)= g L (A) L (A) (3.5)

Since 97 is a bounded continuous operator and P AP is compact, JT is
1A B

6" 1
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compact. This implies that for any E > 0 an infinite sequence of functions

*" {G. I can be found, such 'that .1

UIG. -G I1 >i-5.; but Il(G.) - 9(G)I < C (3.6)

Nonuniqueness led to global ill-conditioning, in that there are regions

in which many exact solutions exist. Compactness leads to local ill-

conditioning, in that in the neighborhood of an exact solution there are

directions H in which a change in the solution G induces a negligibly

small change in the observation m. Therefore although .9(G) and &'(G+H)

are distinct in theory in practice, with the presence of measurement noise,

they are indistinguishable. 0

This local ill-conditioning may be partially quantified by noting that

compactness is due to the operator P APB, and that inversion of .' involves .

inversion of P APB. Therefore the theory of the essential dimension and the
A B

idea of filtered inversion outlined in the previous section suggest that the

essential dimension of the phase problem (the number of compZex parameters

that may be accurately determined) is approximately bounded above by

N= (a -a ).(b -b2), is relatively independent of the noise level in m, and
2 1 1 2

that the solution space should be restricted by filtering to the span of the

first N singular functions of P AP B. Furthermore the discretization

chosen for the problem should accurately approximate these singular values.

The local ill-conditioning of examples 2a and 2b is less well under-

stood. However it is reasonable to suppose that the total amount of in-

formation available in all the constraints is less than the maximum amount of

0 18
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-~~ information in each constraint considered separately. Therefore, if G is .

epresented by 2P real parameters, in example 2a P of these are deter-

mined by knowledge of IGI, and up to 2N by knowledge of IgI, giving an

upper bound on the essential dimension of P +2N. In example 2b the upper

bound is P+N; in this case the condition that G be real places symmetry

constraints on g, effectively halving the amount of information available

in m. Again these results suggest that numerical solutions be constructed

in a similar fashion as solutions to the linear problem.

19
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4. ITERATED PROJECTION ALGORITHMS

The previous sections showed that transform recovery problems are locally

ill-conditioned, which confirms the practical experience of a number of

authors 11,8,36] who noted very slow convergence rates of the Gerschberg- -4

Saxton (GS) algorithm. Therefore, in order to modify the algorithm to cope

with this ill-conditioning, we place GS in a more general setting by viewing

it as a special case of finding a common intersection point of a collection

of sets. In formal language, it is:
f-t

Given the sets {Ti1 with associated projections Pi =P
1 i=l 1 T.iM4 1

find G such that GE n T.i=l I_

Gubin, Polyak and Raik 137] have proposed an iterative algorithm for the

solution of such problems in which at the n-th stage G n 1  is generated by

G = P.G where i= (n-l)mod M + 1 (4.1)

and proved that under certain conditions, such as the convexity of the sets

T, the iterates converged to a common intersection point if one existed. A

survey of this and similar algorithms appearing in the Russian literature is

given by Censor and Herman in [38]. If the set S is defined to be

2
S = {gEL (m): g(v) = g(v) for vEA} (4.2)

for example 1, or

S = {gEL2 (I): g(v)I = m(v) for vEA} (4.3)

for example 2, and the sets T1  and TM defined as

_

20
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T, {GEL 2 (I ) :G 1 9-lg gES) (4.4) L-; -

- .- '.- - - .--. .-- - -.

TM ={G EL2(R): GM =0 for WJB) (4.5) -"

.4 9

22

then, as the Fourier transform preserves L2  norms

h -g  - glh P (9- g) - P1G (4.6)

and GS applied to examples 1 and 2 is recognizable as the iterated projection

algorithm of Eq. (4.1) with M=2.

The advantages of the iterated projection algorithm are: First that it

allows easy incorporation of extra constraints such as those in examples 2a

and 2b by setting M = 3 and adding either the set I

2T2  {GEL (IR): G(M) O for wEB} (4.7)

or

T = {GEL (IR) : JG()i = n(w) for wEB) . (4.8)

Second that in transform recovery problems the projections Pi may be very

easily computed. The disadvantage is that, as stated, the algorithm is

sensitive to local ill-conditioning. Figure 3 shows two instances of the

effects of ill-conditioning: in the first the sets intersect

at a very acute angles so that the projections are very slowly convergent, "4

and in the second the presence of noise has perturbed the two sets so that

an intersection point does not exist. These possibilities, and the

additional fact that T is not convex in phase retrieval problems, imply1D

that the iterated projection algorithm will either be very slowly convergent

or fail to converge at all.
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In order to escape these difficulties we propose that the original

problem be replaced by

M2
Find G to minimize F(G) 1 iG-P.GI1

Obviously F(G) >0 and F(G) =0 iff G is a common intersection point, but

even if such a point does not exist due to perturbations of the sets by noise

in the data,the G that minimizes F(G) is an acceptable pseudo-solution to . -

the problem. We also propose the following extension of the iterative pro-

jection algorithm for minimization of F(G) in which at the n-th iteration

M-1
Hn+l (M-1) - i n Gn -

1=1 (4.9)

G ~P (G + H
n+l M n n n

where

C C (0,2) if TM  convex
(4.10)

E (0,1) otherwise

This algorithm will be termed the le tuZcted p'ojection (RP) atgoAitkm from

hereon.

RP has a number of useful features, in particular it produces constantly

decreasing residuals as does GS [1], which are summarized in the following

Theorem, proved in 115].

Theo 0m 4.1. If the projections P.G are unique and continuous in G
01

then at the n-th iteration the iterates G of Eq. (4.9) satisfy
n

22
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F (G )<F(G ) or G G Vk;01 .(4.11)n+l n n+k n

Furthermore if G is a limit point of the iterates then G is a fixed point

of the iteration.

RP can also be recast as one of the standard optimization algorithms as

the next theorem from [15] shows.

Theo4em 4.2. The gradient VF(G) of F(G) is

M
VF(G) =2 (G -P.iG) .(4. 12)

~i=l

Therefore if TM= L2 (JR) then RP is the standard steepest descent
algorithm with variable steplength A E 1_

We have presented the algorithm in a form in which iterates are

restricted to the particular set TM. This includes the unrestricted case
2M,

(TM = L2 (iR)), but also allows from knowledge about the solution G to be

reimposed at each iteration after less well-known requirements are satisfied

by moving in the search direction. However, the chief benefit of the

restriction in transform recovery problems with the set TM of Eq. "(4.5) is

that the resulting algorithms are e66CZen-t. That is at each iteration they

require function values of G and rG only across the intervals A and

B. Efficiency has not always been achieved, for instance the version of GS

proposed by Papoulis [2] for inversion of the fFT requires knowledge of Gn

across the entire line at each iteration.

To demonstrate that transform recovery problems are efficient we first

note that if TM  is a linear subspace then the projection PM is linear and

4 23
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P (G + XH) G + - V PG(.)
M n n n M_-I PMP, (.3

so that the search direction is independent for X, and for any X~ the new

iterate is still in TM Now for convenience let A =B- cI so that Pm= PC

then

-1
P P1G P F S G (4.14)

Psg is easily shown to be

m(v)e i arg g (v) vEcI

Psg = (4.15)
g(v) otherwise

so that

Psy g -Pcg + P sptg (4.16)

and

P Pc+G  G - GG .(4.17)
cl c c c.S c

Moreover for example 2a

i arg G (w) W .
n(w)e , wEdc

(PP 2 G) (w) (4.18)
0 2 otherwise

and for example 2b

(Re G)(w), if (Re G)(w) >0 and wEcI
(PCP2G) (w) - (4.19)

0 otherwise

It is obvious that calculation of P P.G requires only values of G and
CI

g- .rG on cI, so that RP is efficient.

0 24



We conclude this section by noting that the relationship between RP and

gradient method opens up new possibilities for improvement of RP. In

particular, as noted in Eq. (4.13), if TM is linear then the search

direction is independent of A, therefore it is possible to do a line search

in the direction of H . By Eq. (4.12)

dn
dF(G +XH) VF(G +XH ,H

n n n n n

M-1
2 (G+XH -P. (Gn+XH , ) (4.20)
i 2 n n i n n n

Since calculation of F(G) requires values of P.G, calculation of
1

F(G + XH n ) at any point in a lin search gives sufficient information for

calculation of the gradient at that point. Therefore a line search algorithm

using'terivative information, such as Powell's cubic line search algorithm

[39], may be used for the same cost as a standard quadratic line search that

2
uses values of FJG) only. Since in phase retrieval TM =L (cl), cubic line

searches may be profitably employed.

25
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5. ALGORITHMS BASED ON AFFINE APPROXIMATIONS

The previous section showed that the GS algorithm could be extended to

an algorithm RP that mitigated some of the effects of ill-conditioning in

transform recovery. However the extension does not remove all of these

effects as, in particular, it performs no filtering to restrict the solution

to a well-posed solution set. Moreover as RP is a variant of steepest

descent, it is only of first order and therefore will not perform well even

on some well-posed problems for the same reasons that gradient algorithms

perform poorly on some standard optimization problems. Therefore we seek a

solution to both these problems by proposing a new class of iterative algo-

rithms based on more accurate affine approximations to the sets T. or the1

functions F(G) and P.G. At each iteration these algorithms require the

Q solution of an ill-posed linear subproblem similar to that discussed in

Section 2; this may be done using filtered SVD thus further reducing ill-

conditioning in phase retrieval.

We start with a simple example of how such algorithms may be constructed.

In RP the search direction H may be viewed as being obtained by replacing
n

the sets T. by point approximations P.G at the n-th iteration, and then
1 1n

solving the subproblem

M

Minimize F (G) = G-P 2 (5 )

inl i n

In particular the set S is approximated by the point Pg n. However the •
S n'

only restrictions on functions in S is that they have value g or modulus

2
26_
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mn over the interval A; outside of A they may take on arbitrary values.

I,'Therefore, if A= ci, the affine subspace

Sn= h: h P P Ong c (gP),g ES) (5.2)

contains the point P5 g and is contained in the set S. If it is used to

replace the point approximation P G to T by TS at the n-th
1in I by n

iteration, then the new subproblem to be solved is

minimize F (G) 11 -iGP T G1l2 + 1: 11G -PG 12(5.3)
in i=2

The minimum L nsatisfies the normal equations

14-1
- (r* Jr + (M-2)9) L = 5*Pg + F, P. G (5.4)

c c c S"n n
i=2

giving a search direction H nL n-G n If M > 2 then this subprobldsm is

well-posed as (r*Jr + (M-)o) has a bounded inverse; but if M2 then
c c

the problem is inversion of the fFT r recast as a linear least squares
C

problem. This is an ill-posed problem best solved by filtered SVD as

described in Section 2; but as the same linear operator appears at each

iteration the SVD need be calculated only once.

A more accurate approximation arises from replacing the projections

P.G by the linear approximation

P.G P.G + Jr(G )(G-G (5.5)
I in 1 n n

at the n-th iteration, where Jr is the Frecet derivative of the operator

P.. We assume that . exists and is a bounded linear operator; conditions . -

27



on the sets T. that would guarantee these properties are quite complicated

(e.g. [40]) and are beyond the scope of this work. However if .Wi possesses

these properties then it is symmetric, J- i is the Hessian (i.e. the
1

2
second Frechet derivative) of the function F. (G) ERG -P,GII and for every

G

(J-X .(G)) (G-P.G) = 0 (5.6)

If this approximation is used at the n-th iteration the corresponding

subproblem to be solved is

M-i
minimize F (G) = -G-P.G -Jr.(G )(G-G ) (5.7)

n i n i n n

The function L that solves this problem is by definition the least squares

solution to the block system

.0-3r (G 1
in nCL (5.8)

- (Gn G n-PMGJn J

Since the original transform recovery problem was ill-posed, this block

system is also usually ill-posed and should be inverted by filtered SVD.

However the cost of calculation of the SVD of the entire block matrix atI@
each iteration would very expensive. Therefore we propose that the SVD of

each block J-Jtr (G )be calculated and filtered separately to give an
1 n

approximate filtering of the whole matrix. As we shall see later in the

section such filtering can be done relatively cheaply.

28
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The third set of algorithms described here are based on the following ]
affine approximation of F(G) by

F(G) -F(Gn) +VF(G (G-Gn + 2 n ) n F(Gn n

From Eqs. (4.11) and (5.5).

M
VF(G) = 2 > (G-P.G)

i= 1-

2 M
V F(G) = 2 . (, -,, (G)) G(5.10)

i=l

At each iteration this approximation gives the subproblem
SI

minimize F (G) F(G ) +7F(G )(G-G
n n n n

+ (G-G )V2F(G )(G-G ) (5.11)2 n n n

2
which, if V F(Gn) is positive definite, has as its unique minimum the

n

solution L of Newton's equation
n

V 2F(G )L = -VF(Gn ) (5. 12)
n n

giving the standard Newton search direction H nL n-G n However, for phase

retrieval problems, in order that the resulting algorithm be efficient in

the sense of the previous section we replace Eq. (5.12) by the restricted

equation
PcV2F(G )P L = -P VF(Gn) (5.13)

*c n c c nl

so that values of iterates are required only over the interval cI. ]
29



Equations (5.12) and (5.13) are normally ill-posed and therefore best

solved by filtered SVD. As the fFT, with its exponentially decaying singular ..

values, underlies the Hessian 2 F(G) we propose a cutoff filter of the form

f() 1  if E:3
- 0 otherwise (5.14)

where E3 is dependent on the noise levels and desired accuracy. This should

produce a search direction H in which F(G) should vary moderately rapidlyn

as directions corresponding to small eigenvalues, and thus slowly varying F,

have been filtered out. However the resulting direction is not necessarily a

2
descent direction, as for some G, V F(G) will have negative eigenvalues;

but this may be corrected by use of the filter

f(M) = X if 3

= 0 otherwise (5.15)

Newton's algorithm in which Eq. (5.13) is inverted with the filter of Eq.

(5.14) shall be denoted by FN; if the filter of Eq. (5.15) is used it will

be denoted by FNP.

2
Since V F(G changes with each iteration FN and FNP incur con-

siderable costs in calculation of a new SVD at each iteration. Although some

savings are possible by using the old SVD as a first approximation to the

new SVD with optional iterative refinement, we instead sought to reduce

Eq. (5.13) to the block form of Eq. (5.8) so that block filtering could be

applied. This may be done by noting that if J-Jr. is a symmetric positive

3005



1/2
definite square root (J- Jr) which by Eq. (5.6) satisfies

( .(G)) (G-P.G)= G-P.G (5.16)

I II

Therefore Eq. (5.13)

EM- 11 M- 1
Pc(e 9 - i(Gn))P L = - (G -P P.G ) (5.17)'=1 i=1 n c -

may be rewritten as

122M-l 1/2
P ( J- (G) 2p L -- P (- (G)) (G -P.Gc 1 n c nn i n

P(~'.~G)/)PL = -i=l (5. 18)

which in turn is recognizable as the normal equations for the least squares

solution of the block system

(. _ r(G)) P/2p G - PPG
1n C. n c n

(J-3 • (G1/. = - G 5.19)

1/2

Block filtering was chosen because of the simple form of the blocks in

Eq. (5.19) in phase retrieval problems. If the operators P. are viewed as

Re H(w)acting on the pair of real functions I I instead of on the complex
Im H( )

valued function H(w) then simple calculations show that O-j32(G) may
2!

be represented as a block diagonal operator whose 2 x 2 diagonal blocks,

are indexed by the variable w. For example 2a

31
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n (w)1
[ sine cosel .I:"'"' 0

[sin e -Cos elJ~w[cos e sin e

(O- 2 (G)) (w2) = (5.20)

cos 2 w c z at u

where 6 arg G(o M -- 1

~~~~and for example 2b ; 2 ii~i
0: 0] if (Re G)(w)>0 and

0 1 ,WE ci -

The spectrum of each operator -2 is now recognizable as the union I .

over w of the spectrum of each block. For example 2b the block spectra

consists only of the set {0,l) so -Jr2 is its own square root. For

example 2a the spectrum of 6-j2 takes on a range of values, some of which

may be small or negative. Consequently (J_ r2) 1/2 is either ill-
2

conditioned, or not well defined (i.e. has imaginary eigenvalues) or is both.

Therefore a filter with one of the following forms is used

f(X) = IX11 / 2 sign X, if Il X I -"

= 0 , otherwise (5.22)

nf(X) n-w X"fX
3

= 0 , otherwise (5.2j)

to replace the entry 1 - n(w) in Eq. 5.20) by f(l n(W) Finally
IGMw) inE.(52)by fl M ial

for either problem the original block (6-.Y 2 (G))P is reduced in size b,

2 c

32

. . . ." - - .. - ' i. . -' - -. '., ' . . . .'.- .. . , ... - ' i ,"',," ,, ' : .. _.& _ . - .. ,. . .. , . , .- , .. , . " / _" _,..- . ..-. :- -. :.



,|,
eliminating from the block those equations for (Re H)(w) or

sin e (Re H) (M) - cos e (Im H) (M) that correspond to eigenvalues that have been

filtered to zero.

From Eq. (4.15)

P -r (G))P - c (j- Ye (g)).r (5.24) .
c 1 c c S c

where g= JG and (g) is the block diagonal operator

s cos 1 - m(v) sin -cos

(c-:::j)[cos 0sin 1 tcos sin 1(5.25):
where - arg g(v).

P (O- J)P does not possess an obvious symmetric square root however Eq.
c 1c

(5.24) suggests the asymmetric square root (J-Jr. (g )) 1 2 . This composite

operator may be approximately filtered by filtering each component;
1/2 1/2...

(9-.X (g)) may be filtered as was (6- /2 in example 2a and .
S 2c

may be filtered after calculation of its SVD as described in Section 2.

Since the first filtering requires a trivial calculation at each iteration,

and jr is independent of the iterates, this filtering may again be done

cheaply.

4 Therefore, after rows corresponding to filtered elements have been

eliminated, in phase retrieval problems we are left with a reduced block

system

1/2 C S  n-"."""

41[ - f]g))f (.c) L = (5.26)

1/2""

t- 2 (G) f ] L GP2 Gn Gnj f

4 33 -
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I

to solve in a least squares sense. This can be done using a standard

routine such as LLSQF in the IMSL library, or further advantage may be

taken of sparsity within the system. If Eq. (5.26) is solved at each

iteration with the filter of Eq. (5.22) resulting algorithm is termed SQFN;

rM if the filter of Eq. (5.23) is used the algorithm is SQFNP.

0

0

0
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6. SOME ILLUSTRATIVE NUMERICAL RESULTS

To conclude the paper we give a brief account of some numuerical solutions

to examples 2, 2a and 2b using the algorithms proposed in the previous

sections. Reference is made to our two previous papers for detailed numerical

computations of a wide selection of problems. The measure of performance of

the algorithms was taken to be the number of iterations required to reduce the

function F(G-) to below a prescribed value. The ill-posed nature of phase
n

retrieval problems implies that this is not the best of measures in that a

small value F(Gn) does not necessarily imply that G nis close to the true

solution G. However without knowledge of the true solution we have none

better. Therefore, because of this ill-conditioning and the limited resources

for numerical computation at our disposal, the results presented here are

intended as a guide to the behavior of the algorithms on real problems rather

t!har. a firm prediction of their likely performance.

we begin with an account of the mechanics of the computation. First is

the discretization: it was determined by the requirements that it gives an

accurate, efficient approximation to Jr, and that the discrete projections
c

be easily calculated. Therefore a discretization based on N point Gaussian

... quadrature was chosen; the numerical experiments mentioned in Section 2 ..

showed its efficiency and its pointwise nature allows easy evaluation of

projections. The discrete problem thus involves determination of vectors

9 , G EC whose elements Gk are to be approximations to the function

values gLP~) GC(P at the abscissae Pk of the N-point Gaussian quadrature

II
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rule on cI. To this end vectors m n EIR are formed with components

7k m(Pk) , n,=n(P)k where m(v) and n(w) are the known zoduli. Then

matrices W, FE C are constructed with W being a diagonal matrix whose

k-th entry is the weight wk of the quadrature rule, and F having entries

F -e The discretized example problems are now.

Find vectors g, G such that g-FWG and

Examp le 2: Igk' -

Example 2a: I&I - Mk IG I -n2.

Example 2b: IgkI - mk , G£ 0.

In order to test the algorithms, particular examples of each model

problem were chosen. Of particular interest, in-as-far as this paper is

concerned, is the test function

i2r1W (0)
G e (6.)

W(-) - w S (-) + W S (-)
c 3 3c 44 c

W[ 3  3 + W 4 6 2 (6.2)

G(M) is the pupil function of a slit aperture having unit amplitude over the

exit pupil and suffering from wavefront aberrations of optimum balanced coma

S and optimum balanced spherical aberration S4, where W / and W /X"
3 4P3 4

are the dimensionless aberration strengths. S3  and S4  are the slit

aperture versions [413 of the Zernike polynomials. This test function was

used previously in (9]. In reference [9], the inversion assumed that the

amplitude distribution over the exit pupil was unity; in the present case

3
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neither the amplitude distribution or wavefront are known a p4Z0o4. The I
nmerical calculations summarized here were carried out for N3 - W4 - 3X/8.

3 .-W4

We now outline the basic structure of all the nuerical test runs before

considering various points in detail. All tests consisted of the four

essential steps:

1. Choose an initial guess G0.

A

2. Given iterates gn and Gn compute a search direction Hn

3. Calculate a steplength X and new iteratesn

Ga G +X~ H, 9 FWGn+l n nn n+1 n+l

4. Iterate steps 2 and 3 until the convergence critiria are satisfied.

The convergence criteria used in all calculations were

F(G < 10-  or 2 Hn11 < 2 10-  (6.3)

nk-0 .I2

together with an upper limit N on the number of iterations. The sum ofmax

the last three steplengths, rather than fln H nI alone, was chosen as in ill-nn ,

conditioned minimization problems "stop-start" behavior is often noticed.

That is a large step often followed by one or two small steps, after which

another large step is taken. This feature was often observed in the use ofaffine approximation algorithms, dLifferences in magnitude of successive * A
steplengths by factors greater than 100 occurred fairly frequently.

Three different forms of initial gu,.s were used:

1. -0, -

i
2. G0t" (1-C1) (l+c1r)G,

37 , S
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3. G

Guess 2 is a damped perturbation of the true solution G with E repre-

senting the noise level. For convenience we shall express this level as a

percentage, e.g. Elm .2 will be described as Elm 20% noise. The variable

r is a random complex variable with modulus uniformly distributed over [0,1]

and phase uniformly distributed over 10,2)]. Guess 3 represents a small

totally random perturbation about the origin; again for convenience such

guesses shall be denoted by Elm 100%.

The first results reported are those on determination of an optimal

choice of X . Three possibilities were considered:

11. 1n

2
2. X = r where r is a random variable uniformly distributed overn n n

[0,2].

33. X3 is the approximate minimum of F(G +X H ) as a function of Xn n n n
determined by Powell's cubic line search algorithm [39] with the

following convergence criteria on the iterates 3
k n

k n .-(n n n

33

k<5 (6.4)
VF Gn+k X Gn 3inkA"

n n

The performances of XI were compared by running each possibility on each
n

model problem with the appropriate test functions using RP. The parameters
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c= 2, N= 40 and N 50 were chosen and each problem was started withmax

three different initial guesses with £1 .20%, 60% and 100%..

The results were remarkably uniform over all test cases of model problem,

1 2test function and initial guess. Choices X and X performed almost
n n

identically with X3 just under a factor of 2 better. Almost always onlyn

one extra function evaluation was required for X . This extra computationn

almost exactly balances the savings in the reduced number of iterations so

that all three choices incurred the same computational cos t in reduction of

3F(G ) to a specified value. However the greater flexibility of X led to
n n

its adoption in all subsequent calculations.

We next attempted to estimate the local ill-conditioning in the problem

by adding a small perturbation of size £2 to the data and starting the

algorithm at the true solution G of the unperturbed problem. The results

were inconclusive; although the algorithms terminated at a vector such

that IIM G Iil/llG il.-2 this was due to the conditions F( i) < 10 or

n > N being satisfied, and not due to convergence of the iterates which

appeared to cycle around some fixed point.

Further results showed that the problem was globally ill-conditioned in

that a number of differing functions were found starting from a random

guess (c,= 100%) such that F( ).-10 for example 2, or F( ) -10

for examples 2a and 2b, but with 1 -G1/UGil. This suggests that the

surface {(F(G),G): GE cI is very rugged, as expected from the results in

Section 3 on existence of multiple solution in one dimension. The results "

also showed that the iterates determined as approximate solutions to example
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2a and 2b were definitely more acceptable as solutions than those for example

2, even though as measured by F(G) they were worse by a factor of 10 or

more.

A good initial guess is of great help. If one is not available then it

is tempting to start with guess i, however some analysis [9J has shown that

if the iterates have some symmetries, then such symmetries will be preserved

by the algorithm regardless of the form of the true solution. Thus the

highly symmetric choice of Go= 0 is to be avoided.

An attempt to estimate the effects of ill-conditioning due to the

presence of 3r was made by restricting iterates in P to the span of the
c

first few singular functions of J. When done for c= 2 the resulting
c

iterates reduced F(G ) at a slower rate, gave final iterates for which
n

- Gil was approximately the same as in the unfiltered algorithm, and still

failed to terminate due to the convergence of successive iterates but rather

endeddue t8 the satisfaction of one of the other two conditions. For this

value of c there are approximately nineteen significantly nonzero singular

values; the results indicate that even over this subspace the function F(G)

is widely varying due to the nonlinearity and existence of multiple solutions.

It therefore seems likely that a severe restriction, e.g. to the span of the

first five singular functions, is necessary to provide an easily solved

problem.

The numerical results presented are some typiCa examples of the behavior

of the algorithms on model problems 2 and 2a, with parameter pairs (c,N) of

(1.5,22), (2,32) and (2,40) and test function G, Eq. (6.1). For numerical

V
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results concerning model problem 2b, see [15]. Tables 1 and 2 first give

the average number of iterations ; and average final value. F(G-) of RP
n

when iterated to convergence on several different initial guesses, each

perturbed by an amount £1 from the true solution. The remaining entries

are the ratio i/i, where i is the number of iterations required by the

remaining algorithms to reduce F(G to below F (Gn). Cases where the
n

algorithm on trial failed to reduce F(G ) to within 100 F(G~) are denoted
n

by a *. Figures 4-7 show 4 typical final iterates reached by these algo-

rithm for varying problems and values i.

The filter parameter c3 of Eq. (5.14), (5.15), (5.22) and (5.23) at

the n-th iteration was calculated from the quantity

£ max{min{4l)Xn H 1l- .025,.2),.002) . (6.5)
n-l n-i

For FN and FNP, C3 was taken to be p; for SQFN and SQFNP, c3  p/3.

This expression was calculated by trial and error and, although by no means

the last word, at least has the property of giving search direction H such

that the associated step length Xn almost always lay in the interval
n

1.1,1.5] and X~ -1 when close to the true solution.

ng

4o .
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7. CONCLUSION .. :

The ill-posed nature of phase retrieval induced too much variation in

numerical calculations to allow the drawing of quantitative judgements fro,-

these results, but some qualitative remarks can be made. For these one-

dimensional problems RP was clearly the least expensive in terms of total com.uta-

tional cost to reach a desired objective, and it is difficult to see how any

other algorithm can be improved through taking advantage of sparse Hessians,

etc. to seriously challenge RP for this position. However SQFNP was the

most robust in producing acceptable iterates from almost any starting point,

and although it did not display to the same degree the apparent quadratic

convergence of FN and FNP when close to the true solution, this could

possibly be remedied by a better choice of filter.

Efforts to estimate the role of local ill-conditioning and filtering in

phase retrieval problems were largely frustrated by the effects of global

ill-conditioning due to the existence of multiple solutions. This makes one

dimensional problems unsolvable for practical purposes, but it is expected

that in higher dimensional problems of real interest, with fewer possible

exact solutions, that local ill-conditioning will become dominant. Hopefully

this may be removed by filtering and quadratically convergent algorithms

will have a wider domain of convergence, thus becoming competitive with the

present first order iterative schemes.

42
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Table 1. Relative performance of algorithms on examzple 2 with test function
G, Eq. (6.1).

N FN FNP ISQF*N SQFNP

-522 1.9x10 50 1.5 1.0 .40 .30

-5

K60 32 1. X 10 20 *.825 .875 .45

40 3 x10- 40 *1.0 .35 .30

22 5 X10 5  50 1.5 .30 .60 .30

100 32 4 x10-4  20 1.6 .45 .35 .40

4 40 a X10- 40 j .50 .50 .425 .30
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Table 2. Relative performance of algorithms on example 2a with test function
G, Eq. (6.1).

Ei N FN FNP SQFN SQFNP

-60" 20 22 9 x10 23 .20 .20 .50 .50

-4
60 22 5 x10 50 .50 .30 .35 .45

-4
32 3x10 20 2.0 .45 .50 .60

-3
100 22 2 x 10 50 3.0 .80 .325 .325

-22 _____ _____ _ _ _ _ _

6 x 10 20 1.0 .50 .40
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Fig. 3. Two examples of poor convergence of the alternating projection1

algorithm induced by ill-conditioning.
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E*W2% - exact phase from Eq. (6.1); 0 reconstructed phase;

---exact modulus from Eq. (6.1); Areconstructed modulus.
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C, 0 60%: exact phase from Eq. (6.1) ; 0 reconstructed phase;

---exact modulus from Eq. (6-1);- reconstructed modulus."
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*E =60%: - exact phase from Eq. (6.1); 0 reconstructed phase;

---exact modulus from Eq. (6.1); A reconstructed modulus.
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Fig. 7.Solution G to example 2a reached from an initial guess G0  with

C., 100%: -exact phase from Eq. (6.1); 0 reconstructed phase;

---*xact modulus from Eq. (6.1); Areconstructed modulus.
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ABSTRACT

Problems involving reconstruction of partially known, bandlimited j
Fourier transform pairs from noisy data are now regularly encountered in a

wide variety of scientific and technical areas. This paper is the first in

a series of studies of algorithms for their solution. These studies focus

on the algorithmic structure with respect to the dominant feature of such

problems, that they are ill-posed. The algorithms developed here are for

the linear prototype problem; namely extrapolation of a bandlimited function

known over a finite interval. The problem is cast as the inversion of a

linear operator, the finite Fourier transform. Criteria can be deduced from

a knowledge of the spectrum of this operator for the suitability of extrapola-

tion algorithms. These criteria are used to evaluate existing algorithms

% (such as the Gerschberg-Saxton) as well as our new algorithm based upon in-

version of a Galerkin approximation to the operator using singular value de-

composition. Numerical results on the relative merits of different discretiza-

tions in our algorithm, and on its success in extrapolation in two examples .°.I

(with optical diffraction interpretations) with noisy data are presented.
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1. INTRODUCTION
0

A recurring problem in many fields is the reconstruction of a

Fourier transform pair g , G from partial data on either or both func-

tions. Considerable effort has been expended in the development of algorithms

for its solution; although there have been some successes, the problem has

generally proved to be difficult. In a series of papers, of which this is

the first, we aim to detail the features that cause difficulty for numerical

calculations and to construct algorithms that take explicit account of such

features. It is not possible to remove such difficulties, but if they are

ignored in the construction of algorithms they invariably surface later in the

solution in a more inconvenient form.

The canonical examples for such reconstructions are:

Exampe 1, Ext'apotaZon o6 Band-L mted Signats. Given a noisy

measurement of g on an interval [al,a 2] and the knowledge that G

vanishes outside the bounded interval [bl,b 2 ] ,reconstruct g and G on
12

the entire real line.

Example 1 is the archetypical linear problem in transform recon-

struction. A number of algorithms have been proposed for its solution, either

by iterative means: Gerschberg and Saxton [1], Papoulis [2], Youla [3] or by direct

means: Cadzow [41, Sabri and Steenaart [5].
0

ExampZe 2, Th Phaze Puobtem. Given a noisy measurement of jg.

on an interval [al a2] and the knowledge that G vanishes outside the bounded

interval [bl,b 21, reconstruct g and G on the entire real line.

06
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Example 2 has been of theoretical interest for some time; see

for example Burge, Fiddy, Greenway, and Ross [6]; however in this most

general form it has proved intractable. Numerical solutions obtained in

particular cases have done so by (sensibly) incorporating further knowledge

of g and G Two such examples are: I - -

Exaple 2a, The Two Modui Problem. Given noisy measurements of

IgI on [al,a 2] , GI on [blb 2 ] , and the knowledge that G vanishes

identically outside of [bl,b 2 ], reconstruct g , G over the entire real

line.

Example 2b, The Phase Problem with Nonnegativity Contants.

Given noisy measurements of IgI on [alla 2 ] and the knowledge that G is

nonnegative over [blb 2] and vanishes identically outside [blb2], re-

construct g , G over the real line.

Gerschberg and Saxton [1] developed a widely used algorithm for

Example 2a; almost all the iterative algorithms for the solution of the gen-

eral reconstruction problem are suitably modified versions of this particular

case. The Gerschberg-Saxton algorithm (hereafter denoted as the GS algorithm)

in its general form is essentially the steepest descent algorithm with unit

step length and so is first order [7]. An alternative second order algorithm,

based on Newton's method, has been proposed by Barakat and Newsam [8]. In [9],

the GS algorithm is successfully applied to a problem of the type in Example 2b.

The canonical examples presented are simple in form, nevertheless

they contain the salient features that make other, more complicated, problems

intractable. The font of all difficulties is that the reconstruction problem

ii ill posed, and badly ill posed at that. The original definition of a

well posed problem is due to Hadamard 10).-
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Ve6,Z _ on. A problem is well posed if the solution

1. exists

2. is unique

3. depends continuously on the data.

If a problem violates any of these conditions, it is ill posed.

Example 1 satisfies only condition 2; therefore it is ill posed.

To see that it fails condition 1, it suffices to note that g is the trans-

form of a function with bounded support so that it is analytic by the Paley-

Wiener theorem [11]. Any perturbation of the true g by noise that is not

analytic produces a perturbed problem with no solution. Analyticity does

imply condition 2, but also that condition 3 will fail very badly. This is

due to the natural error metric for noise being the standard energy norm,

which is of no use as a measure of analyticity. Therefore noise that is

arbitrarily small in the error metric will produce arbitrarily large changes

in the solution, or even cause it not to exist. This aspect of the problem

is discussed in section 2.

Example 2 fails all three conditions; condition 1 for the same

reason as Example 2. Akutowicz [12,13] shows the existence of multiple

solutions for the phase problem both with and without nonnegativity con-

straints. It is not known whether the two moduli problem has multiple solu-

tions, except for some trivial multiplicities due to symmetry and constant

phase factors. As for condition 3, Example 2 can be locally

linearized into Example 1, so it also fails this condition.
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Many researchers do not seem to be aware of the full implications

of these failures for numerical algorithms for approximate solutions.

Gerschberg and Saxton have been careful to show that their algorithm is

always error decreasing and to give examples of behavior using noisy data.

Chapman [141 modified their algorithm to make even greater use of known noise

levels. However the overall approach is still on an ad hoc basis, noise cannot

be explicitly handled in a satisfactory fashion in an iterative algorithm. . -

Papoulis [2] gives error bounds for his iterative method, but not a way of

incorporating them efficiently into calculations. It will be shown in this

paper that direct methods do allow development of robust algorithms. The

two direct methods proposed in Cadzow [3], Sabri and Steenaart [4] call

for inversion of ill conditioned matrices formed with no concern for optimiz-

ing the condition number. The optics literature contains many references

to "the number of degrees of freedom" [15,161.

However, the natural corollary has not been noted: numerical solutions to this

problem should contain discretizations of approximately this size and no signifi-

cant improvement in results can be obtained by using greater numbers of points,

approximating functions, etc. Ignorance of this point has lead to unnecessarily

long calculations in the belief that more points give greater accuracy.

This paper aims to provide a detailed study of Example 1 in the

language of numerical analysis, and to use this knowledge to construct numeri- .;.-

cal algorithms for its solution in a rational manner. Section 2 contains an I S

exposition of the structure of the finite Fourier transform and the linear

operator associated with Example 1. Using this structure in conjunction with

the theory of singular value decomposition, the solution is decomposed into

63
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two parts; the first of which is finite dimensional and contains significant

information in the presence of noise,while the second contains no trustworthy

information in the presence of noise. In section 3, numerical algorithms are

proposed that efficiently identify these two components, in addition a list ..- 7

of desirable features of possible discretizations is given. Section 4 contains q

an exposition of iterative methods, and a comparison of their merits with those

of the direct methods of section 3. Finally section 5 contains a discussion

of some particular discretizations with numerical calculations showing their

robustness in the presence of noise.

A clear exposition of the linear problem is important not only in

its own right, because as mentioned above the local structure of nonlinear

reconstructions can be approximated by linearization in the neighborhood.

The results of section 2 on this linearization show that the nonlinear re-

constructions are essentially problems over finite dimensional manifolds.

If Newton's method is used to carry out these reconstructions, an accurate

efficient way of identifying the tangent plane to this manifold is needed.

Reference [8] shows that singular value decomposition can accomplish this

task. We believe that the results of this paper show that Newton's method

coupled with careful discretizations for nonlinear reconstructions can be

competitive with the widely used iterative methods.
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2. THEORY OF THE MODEL LINEAR PROBLEM

This section contains an analysis of the theory of the linear

reconstruction problem discussed in the previous section. A formal

description is:

Given a function ^(v) measured on v e A [a11a2] that is

known to be in the Fourier transform of a function G(w) which has support

contained in B - bl,b , extend ^(v) to a function g(v) defined on the I

entire real axis.

For convenience we introduce the following notation.

2Ved~Lnition 1. Let G(W) C L ,the Fourier transform g(v) of

G(w) is defined as

f e2 1ivw

and denoted by

g =dG (2.2)

The inverse transform is denoted by

= .-1 
.

G g (2.3)

Vedin2-on 2. Let S be a subset of the real line. The projec-

tion operator on L2  associated with S is denoted by P and defined by
S

(P sf ) (v) =f(v) V E S

(2.4

65

- ." . • . - - -. -. . - • -. . -- " -.. ' .-" .- -.-



In this notation, the model problem is: Given a measurement -

find g and G such that

g = PB TPAG , g =JPAG (2.5)

The problem can be symmetrized using simple translations and scaling 1o read:

Given a measurement g ,find g , G such that

g P P G , g P G (2.6)
, C C C'".""

where

C C [-c,c][, c - -a) (b2 -bl)]
I 2  (2.7)

0 To solve Equation 2.6, we need to convert the linear operator

P Jr PC  As noted in the previous section this is an ill posed problem.

C c

By the Paley-Wiener theorem [111; ^(v) , the Fourier transform of a function

with bounded support is analytic; consequently it has a unique extension g(v).

Therefore the model problem is one of analytic continuation which is known to

be highly sensitive to measurement error in 9(v), see [1,8]. In order to

make quantitative judgements on the effects of noise in Equation 2.6, we shall

use the concept of singular value decomposition. We assume the reader to be Z.

familiar with this technique applied to either infinite dimensional compact

linear operators or to finite dimensional matrices; a discussion of the first

case can be found in Baker [17], of the second in Stewart [181.

In a series of papers, Slepian et al. [19-21], the structure of

P J P was fully explored. The key results are repeated here:
c c

1) P J P is a normal compact operator, and

c c

IIPC 'Pc1l 2 < 1 (2.8)
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2) The eigenfunctions of P J;P can be taken as real. They
C C

are then the prolate spheriodal wavefunctions here denoted by 4n(vc),
n

making explicit the dependence on c

3) The eigenvalues X (c) satisfy
n

iTrn/2
n (c) =e~~f/ Ixn (c)i (2.9)

IxnI > iAn+l > 0

4) The singular values are denoted by a (c) with
n

a n (c) H IAn(c)I (2.10)

They behave as follows

a. For a fixed c and increasing n

Y (c) ' (c 2/n)2n (2.11)
n

b. For a fixed n , there exist constants n , 8n

such that for increasing c

82
o (c) 1 -a e (2.12)

n n

Since P P is compact, it has a singular value decomposition
c c

U , . , V where U and V are complete sets of orthonormal functions, and

. is the decreasing sequence of nonnegative numbers defined in Equation 2.10.

Since P . P is normal
C C
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U = (w,c)n

(2.13)

V =

where u and v are constants such that lu I IV = 1. With this
n n n n

machinery, the solution to the problem can theoretically be determined by

expanding 9 and G as

.(V) = aVn (v,c) (2.14)
nn=n

GM( = b u n (w,c) (2.15)
n-- n

The coefficients a are determined directly from the known and the b "
n n

from the relation

= P cP cG (2.16)

the final result is

a
b= n (2.17)
n a

n

In this representation, the degree of ill conditioning of Equation

* 2.6 (i.e. the measure of how ill posed Equation 2.6 is) as well as the

effect of noise can be determined from Equation 2.17 and the behavior of

a . Intuitively since a - 0 , by Equation 2.12 a small error in the
n n

* coefficients a of a high frequency (large n) component anVnn (V,c) of

g(v) will induce a large error in the coefficient b given by Equation
n

2.17, of the corresponding component of G(w). A more precise statement is
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2
Lemma I Suppose the relative error (in the L norm) on the

measured g is E , and the maximum absolute error that will be toler-

ated in G is 6. Then there is a decomposition of G into two components

G1  and G2 , in which G1  is always accurate within an error 6 and

G2  cannot be guaranteed to be this accurate. i

PA00: Let G he decomposed as the sum in Equation 2.15. For a I
fixed N , the worst possible absolute error in the first N components of G

is induced by assuming that al,... aN_l are precisely known and that

a, =1, a2 - aN I  0 , aN is in error by c and a. = 0 for i > r.

1

Then

b1 =l b 2 b- =0 b b.=0 for i >N

= ;/ON = bloEl/aN) (2.18)

thus the absolute error induced is (eal/aN). If N is chosen so that

1- N

then the first N componenets of G are always known to within an absolute.]

error 6 , but the remaining components are not that trustworthy. i
I

But as the decomposition allows a direct observation of the effects

of noise, so also does it allow direct action to reduce these effects. A

filter f(o,E) dependent on the noise levels E, 6 is introduced so that G
S

is estimated by G' -

G'(w) M an f(on)n (w,c) (2.20) "
n-0

where -
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f(n)O (a) as a n l

(2.21) .

0 as a 0
n

In order to construct a sensible filter for the general problem,

we first note the following conclusions from Equations 2.8 - 2.12.

a. P c TP is badly ill conditioned because a (c) exhibitsc c n,

exponential decay in n

b. For a given c , the singular values are approximately

distributed as a step function in that there exists an N (c)

such that

<N(c) (Y (c) ' 1

(2.22)

n > N (c) a n (c) " 0
n

c. For a given c and noise levels e, 6 let N(C,6,c) be the

N of Equation 2.19. Then N(E,6 C) is bounded by Equation 2.12.

Furthermore from conclusions a and b, N(E,6,c) is relatively

insensitive to C and 6 (i.e. for almost all c and 6 there

exists a p << 1 such that

N(S,6,C)-l < N(E,p6,c) < N(E,6,C)

(2.23)

< N(pE,6,C) < N(E,6,C) + 1
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The general choice of filters is an art, however here we make

the particular choice

f(o,C) = 1/u , >

(2.24)

= ,<

relying on conclusions b and c above. This filter effectively truncates A
the series in Equation 2.20 leaving only the trustworthy component G , of

Lemma 1. Since the filter is insensitive to c and 6 , the number of

elements in the truncated sum of Equation 2.20 is insensitive to noise levels

It corresponds to the "essential number of degrees of freedom" of the model

problem mentioned in section 1. We stress that this number is relatively

noise independent (i.e. a function of c with weak dependence on e and )

and that it represents the number of components of the solution that are of

guaranteed accuracy.

Based on these results, the following algorithm is proposed. For

a given c , , and 6 calculate N(c,e,6). If it is sufficiently small,

accurate numerical approximations to a ' 4n(vc) are calculated for
n n

n < N(c,e,6) and G is estimated using Equation 2.20. This procedure is

optimal in that it focuses on accurately calculating components of g that .-

are significant in estimating G while ignoring components that are useless

for estimation.

0
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3. DISCRETIZATION AND ASSOCIATED THEORY

In this section we consider a general class of finite dimensional

approximations to g , G and weigh the merits of different approximations.

The discretizations considered are derived using Galerkin's method, they are

based upon the natural error metric 1-12I for the model problem. We choose '
2

two sets of linearly independent functions on L [-c,c]

2 {a 2L e, 1 (3.1)
k k=l Z e =1 IIkil 2 12

and introduce

Vejimiaon 3. Let SK denote the subspace spanned by {k}=1

LS the subspace spanned by {6i£1 ; let PK denote the projection operator
L K

2 2
from L onto SK' QL the projection operator from L on SL

We generate approximations

G ES -S GG (3.2)K 9L L

by requiring that K' GL minimize

II-hI 2 h E SK (3.3)

II PKPC sl Jr 'C H E: (T3.4) ~ :
2 SL

* Since S , S are finite dimensional, such approximations
K L

always exist. By expanding gK GL in terms of the basis functions

K L

* k bk k  GL= ( £ £ (3.5)
K k=1 72
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and defining the quantities

-. Ck k ' Bij = ( i ' Pj) (3.6)

Ai. = (" ' 6.)3  Dk 4 = e k (3.7)

then Equations 3.3 and 3.4 can be rewritten as discrete equations for the

vectors a- (a I ... aL)+ (b 1 2. . . , b K
)

We note that

K minimizes Equation 3.3 (3.7)

0K

G minimizes Equation 3.4 a minimizes
L

E.L (3.8)

where the matrices B , are defined in Equations 3.6 and 3.7. For

typographic convenience, the subscript 2 will be omitted from II° j

In this construction, there is considerable freedom of choice for

the subspaces S , S and their bases; it is therefore appropriate to
K L

adopt criteria by which a particular choice can be judged. We list six

* criteria for evaluation of approximations and for each criterion list features

or bases that produce an approximation giving good results. We can then seek

a "best fit" approximation to these features.

1. Uniquenez o6 appwmation.: Because " is a strictly

convex norm gK is unique. If K < L then GL is not unique; if K > L

then G is unique unless P ,rP S contains components orthogonal to S
L c cL K

0 73
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Alignments of this form are pathological; the practical problem is the

occurrence of nea)rly orthogonal components. These components will contri-

bute to ill conditioning in D , however both the pathology and the ill

conditioning can be avoided by choosing tk so that

P 11 S S (3.9)
c c L C SK

Because the true solution is unique there appears to be no gain

in constructing nonunique approximations. Henceforth, we assume that K > L

and that GL  is unique.

2. Accuracy of approximation6: An obvious requirement for any

sequence of approximations gK G is that
K L

lim II - II = 0 (3.10)
K-)w

and if g is noiseless that

lim IG-GLII 0 (3.11)
K,L -O

Necessary conditions for Equations 3.10 and 3.11 to hold are that the sequences

W k~~ '{ C be complete sets in L 2-c,c]. These conditions are also

sufficient for Equation 3.10, but not for Equation 3.11 because the inverse

of p r P is unbounded
c c

* The important issue for numerical calculations is the rate of con-

vergence of such approximations. Rather than attempt direct estimates of

JIG -GL 11 we consider a more easily computed quantity. The approximating

subspaces chosen implicitly define an associated finite dimensional operator
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RKL = PKc ; PcQ (3.12) . [

The quantity IIR -P c jWPcl can then serve as a measure of the accuracy

of the approximation.

We therefore seek functions Wk 6 k such that

gK G GL "  
, G (3.13)

and that minimize this error metric. The following proposition provides a

partial answer

PA'Dpo4it.on 1: If K = L = N and 'Pk ', are chosen so that

-k(v) = @k (v) = Ok(v) (the k-th eigenfunction of Pc F Pc ), then the

Galerkin approximation generated by Equations 3.3, 3.4 satisfy Equations

3.10, 3.11 as N - Furthermore for any other subspces SKI , SL@ with

K', L' < N

IIRN-P *PcI < IRL, - Pc cI (3.14)

The proof of this and the succeeding two propositions can also be found in

[ ]. Thus the eigenfunctions are an "optimal" basis for construction of

approximations under this criterion

3. CondionLng 06 A, B, D: The previous criterion aids in

distinguishing suitable approximating subspaces SK L . One must now make

a choice of bases within these subspaces. It is possible to choose k

so that D is well conditioned, but this is an illusory gain because the

matrices B and/or A will then be ill conditioned. Therefore calculations

of K (v) , G (M) made by using the representations in Equation 3.5 will be i

K L
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error prone. Since the most informative measure of ill conditioning in a

metric, the condition number, is not easily calculated; we use a less informe-

tive, but more easily manipulated, measure for comparison of different

bases, the determinant.

~pO.6iItionz 2: Let s SL be fixed subspaces with orthonormal

bases {kk}kl ' {}= If {1k}k1 {e£}= 1  are any other bases .

for S, S and the corresponding matrices A, A', B , B', D , D' are defined

by Equations 3.5, then

Idet(B'D'A')l < Idet(BDA)I Idet(D)l (3.15)

PupOition 3: Let KLN, k = k = k N Then for any other

subspaces S, S with K', L' > N

jdet D'I < Idet DI (3.16)

These two propositions demonstrate that under this measure of ill conditioning,

orthonormal bases should be chosen and that the best choice of bases is the eigen-

functions. .. _-

4. Vaie ube zpecZa Lehut6: Particular choices of bases

* yield interesting additional results. If both bases are orthonormal, then

the spectral properties of D are identical with those of RKL , which in

turn approximate those of P FP . If K = L and k satisfy
C c k e

% = Pc PcT k (3.17)

then the Galerkin approximation is also a least squares solution, i.e. GL

* minimizes
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II -P . P 1 H E SL (3.18)

V: 2 .

Both these results are obtained if K = L = N, pk = =
k k

5. Purence o6 noize: The above criterion are concerned only

with properties of the approximations. The important property of the data,

that it contains noise, must be considered. In section 2 we showed that it "

forced a division of the solution into trustworthy and untrustworthy components.

The approximations therefore must echo this division as accurately as possible.

6. Eaze o6 computation: In light of the above discussion

the obvious choice for a basis are the eigenfunctions, but we do not consider

their use as there is no-known simple numerical algorithm for their calcula-

tion. To keep computing costs down k  e, must have a simple closed form

representation. Furthermore the functions P e should also be available

in a closed form so that calculation of an approximate interpolation g to g

=L ~P cGL (3.19)

is cheap compared to numerical evaluation. If possible the inner products

('k'- P Pe6) should also be found explicitly.

Taking all these issues into consideration we seek basis of

simply calculated functions {P k k= which are approximations to the

eigenfunctions *k ; or at least possess, to some degree, the properties dis-

cussed in the criteria above. In particular the basis should be complete,

orthonormal, and have the property that each eigenfunction can be expressed

as a rapidly convergent series in pk

77 9
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Given such a basis, we now describe an algorithm that for a given
"A

observation 9 and noise levels c , produces a Galerkin approximation

G to a component of G that is accurate up to an error S , as in Lemma 1.
N

1. N , K(N) and the subspace S are defined by . -.
K(N)

a. N is the N(E,6,c) of Equation 2.19

}K(N)b. sKC spn{
K. S(N) = 'k k=1

c. K(N) is the least integer such that the finite

dimensional operator RKL associated with K =L= K(N),

SK= SL= SK(N) satisfies

, - P < min(N (3.20)
C c

2. The c , of Equation 3.5 are formed for this choice of basis

and the singular value decomposition [18]

- (3.21)

calculated.

3. The subspaces S= S L= SN  from which the Galerkin approximation

G will be formed by Equation 3.4 are the subspaces of SKN) being
N

the span of the first N eigenfunct'ons of RK(N)K(N), i.e.

K(N)

(v.e (v) V P(v) , k l ... N (3.22)
k () k A 1
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4. The approximant g to g from S can be formed from theN N N

approxmation gK(N) to g in SIK(N) (i.e. the vector c 1. _

Moreover G can be formed directly from c as

N

K (N)
GN (W) = P a Pk() (3.23) p

k=l -. -

with

where

if > (3.24)

kk. kZ. k2 6I

= 0 , otherwise

5. The approximate extrapolation g to g is now defined as ]
N]

NPv) = L Pk(V)
k--1

The algorithm may also be used to solve the inversion of noiseless observations

by choosing sequences e 6 such that e /6 - 0 and calculating for

each k an approximation GN(k) by the above algorithm. Then in the .

limit GN(k) converges to the true G

The construction of an algorithm for the inversion of Equation 2.6

is now complete. The salient features are: use of the singular value -

decomposition of P 9 P , prior estimation of the number of degrees of _c c - -=

freedom N(E,6, c) present at given noise levels, and construction of a

Galerkin approximation from a predetermined set of functions of a simple

closed form that approximate the first N(E,6, c) eigenfunctions.
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A final note: g can not be approximated directly from the sub-

space spanned by {- v Pk kN) a is often done with

kJ; l (V asinvkf

sink(v + kT/c) (3.27)

The untrustworthy components of the basis must first be filtered ouOt by

singul~ar valtue decomposition before the extrapolation is done.
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4. ITERATIVE SOLUTIONS AND ASSOCIATED THEORY

In contrast to the direct algorithm of the previous section we

now consider iterative algorithms and integrate them into the body of theory

already built up. We start with the original iterative algorithm, that of

Gerschberg and Saxton [ 1]; a two-step iteration that updates the approxima-

tion in both physical and frequency space.

I

The formal statement of the algorithm applied to the model problem

is:

a. Initial conditions

go= Go = 0 (4.1)

b. Update

g c Gn (4.2)

Gn P g (4.3)
n+l c n+l

where C is the set 3R-C. An alternative, but more conventional, form -

is easily obtained. Concatenating the iterations above yields

(4.4) -

GP = P - G + 9) = (I-P F P )G + P :-1P C -
n+l c c cn c c c n c c

upon noting that

P G =G , Pc - (4.5)
c n n c

+ P- = I (the identity operator) (4.6)
C C
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Equation 4.4 has a computational advantage over Equations 4.2, 4.3 because

it requires evaluation of functions in the bounded set C , instead of the

infinite domain C , during the iteration.

Equation 4.4 is recognizable as the simplest form of iterative

solution to the normal equations associated with Equation 2.6, that is 6

P -i P P - (4.7)

The normal equations are not usually formed for ill conditioned systems since

they have even poorer conditioning; if P ,jP has singular values a n
c c n

* then P J-iP JP has singular values a . However since the singular
c c c n

values display the step like behavior, quoted in Equation 2.23, for almost

' ' 2
all significantly non zero singular values a O CY s 1 . Consequently

n n

little is lost by consideration of Equation 4.7.

In the presence of noise, the iteration based on the update

Equation 4.4 is usually modified so that either it stops when

JIGn Gn+ I1 <6 (4.8)

where 6 depends on the noise level; or the damped update

~_ !

G = 1A) G -P 9r P FP G + P jr P g (4.9)
n+l n c c c n c

is used, where A > 0 depends on the noise level. The update, Equation 4.9,

if iterated to completion corresponds to a choice of filter

g(=) -- 2 (4.10)

-0 .82
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in Equation 2.20. However iteration to convergence is impossible in practice,

and as yet there is no good theory linking termination after N steps with

accuracy of approximation or noise levels. Therefore the clear insights singular

value decomposition gave in modifying direct algorithms to take account of noise

have no analog for iterative algorithms.

There is a large literature on alternative algorithms for iterative

solutions of Equations 2.6 and 4.7, eq. [22]. The most attractive of these is

the conjugate gradient method. This algorithm uses the residuals

r = P F P P pc J-I G (4.11)
n c c c c n

in the following iteration scheme

a. Initial conditions

Po = Go= 0 (4.12)

r0 = P -lPc C(4.13)

b. Update

G = G +ctP (4.14)
nl n Ohn

P r + p (4.15)
n~ln+l n n

where

IIr 2 I 2r+i 2.=n n: (4._6

n 2 'n 11 2(4.16)c1 Pc~ p~ II 2 ,r
n -n n

The conjugate gradient method stands midway between direct and

iterative methods since it can be shown that the iterates GN  are also
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Galerkin approximations for Equation 4.7 formed by taking K = L = N ,

N
SK = L span {r k kl .Although these approximations satisfy many ofK Li

the criteria of section 3 (the r k are orthogonal, G N~ G if G exists),

an a p' ic' estimate of amount of computation to achieve a desired accuracy

cannot be made, nor can the iteration be modified in the presence of noise

as is done for the direct methods.

If the iterative algorithms are run on a digital computer, a

basis is implicitly used to represent the iterates. The only reason for

not directly using this basis to form Galerkin approximations is cost. With

present day computers, direct solutions are faster than iterative solutions
I|

to linear systems for all but the largest scale problems. This fact, combined

with the theoretical results on the effective finite dimension of the model

problem and a need for careful treatment of noise lead us to the conclusion

that iterative algorithms are not the.method of choice for this problem.
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5. ILLUSTRATIVE NUMBERICAL CALCULATIONS

As an illustration of the results obtainable from the previous

analysis, we present numerical solutions to two particular problems. The

SiL6- is that of discriminating between possible bases for representation

of g G The second is reconstruction of two particular G(w) of inter-

est in diffraction optics from noisy observations 4(v) using the algorithm

of Section 3.

Three commonly used bases for reconstruction are:

Pk(v) = cPk(V/c) k = 0,1,...,N (5.1)

2
k(v) = cos (kTrv/2c) k = even

k = 0,1,..., N (5.2)

= 8 sin((k+l)7rv/2c) , k = oddk

k(v) = 1, v E2ck- (N+l)c 2c(k+l) - (N+l)c

k =

= 0 , elsewhere (5.3)

Here P(X) is the kth Legendre polynomial, and at' Pk are constants

chosen so that the various pk are orthonormal. All three bases may be seen

2as the initial segment of a complete basis for L [-c,c]. Van Buren [23]

used Pk to give accurate representations of the prolate spherioidal wave

functions Ok the p2 correspond to the sinc function basis of Equation 3.27 -.
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3used widely in optics [24,25], and the p are the familiar piecewise constant
k

functions of numerical analysis (often used implicitly in algorithms based on

sampled point values of ,(v)).

If a basis {p k} is used to generate approximate reconstructions

via the algorithm of section 3, condition l.c provides a natural merit function 4

for the basis.

1. For fixed £ and c , the merit of the basis is the size of 4

the least integer K E K(e,c) such that

S aRU, -Pc ' Pcl < E:(5.4) -

However, as estimation of the norm in Equation 5.4 is too expensive for repeated

calculation, we choose a slightly different merit function.

2. For fixed c , c the merit of the basis is the size of the

least integer L E L(s,c) such that

Ian Sn < C , for all n (5.5)

where s are the singular values of L

Since the are orthonormal, the s are also the singular

values of the matrix D . This, together with knowledge of a , allows cal-
n

culation of L(C,c) for varying Pk C E and c
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To rank the above bases, their L(E,c) were calculated for

c .5, 1.0, 1.5, 2.0 and F = .002, .02. The results appear in Tables 1

i
and 2. N(E,c) denotes the number of a greater than E ; L (E,c) , the° n

L(C,c) of basis {pk} . Because it is overly costly to consider every value
k

of N ,the table entries give an interval containing N rather than the

exact result. The singular value decompositions of the matrices D were

evaluated using the subroutine LSDVF from the IMSL library.

The tables indicate that {p } has by far the highest merit rating.

However, the complexity of programming and calculating the Legendre polynomials

and their finite Fourier transforms the spherical Bessel functions jn (y), [26]

1(+1 (x) e dx = 2ik  k(Y) (5.6)

Iii
affects this rating. We feel their use is worthwhile only for large c or

high accuracy computations. The p2 are, suprisingly, the worst of the basis

functions; it requires a very large number of such functions to approximate

closely the higher order eigenfunctions 0 2k+l* We believe this is due to

sin[(k+l)Trv/2c] vanishing at the endpoints v = + c ; however, (2k+lc(C) 0
2

consequently the 42k+l produce poor approximations in this region. The same

problem appears to a lesser degree in approximating even eigenfunctions o2k;

at the endpoints the derivatives of cos(kirv/c) vanish whereas do (+c)/dv# 0.
2k-

2
The low rating of the pk marks them as a poor choice for reconstruction and

imply the sinc functions should not be used for extrapolation.

The basis of choice appears to be {p } , combining adequate approxi-

mation power with ease of computation. The basis also has natural extensions
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to other problems. For greater accuracy, higher order splines may be . g

preferable in use to {pl}; for reconstruction problems in higher dimensions
k

over arbitrarily shaped support sets A , B the basis extends to give the

usual finite element type approximations. g

These results on Galerkin approximations serve as a guide to construction

of good discretizations based on pointwise quadrature rules. As an illustra-

tion we present some results on a discretization of Equation (2.5) on Gaussian

N
quadrature. Let (p i be the abscissae of the N point Gaussian

N
quadrature scheme on [-c,c] with associated weights (i} Then

Equation (2.5) may be approximated by

g = FWG (5.7)

where F is an N X N matrix with entries

A 
2~2iPkP

F = e , (5.8)

W a diagonal matrix with entries Wkk =Wk and g and are vectors whose

k-th entries are (hopefully) good approximations to g(pk) and G(pk).

However in this particular discretization the Euclidean norms of the

2vectors g and 8 bear little relation to the L norms of g(v) and

G(M) and calculations show that the singular values of FW are not good

approximations of those of P JPc. Therefore we replace Equation (5.7) by

c c
the system

(W/) - (W/FW )(W G) (5.9) 7

.l .1/2^ 1 ^1/2

Now the Euclidean norms of Al - and GI - WI G  should coincide with
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the L2norms of g(v) and G(w) and the singular values of

F ~( W )be close to those of P c jP

C -C

We have calculated the L(Ec) of -his approximation for the same

values of E and c used above, the results appear in Table 3. It appears

that Gaussian quadrature is on a par with Galerkin approximations by Legendre

polynomials as an efficient discretization; this is only to be expected given

the role Legendre polynomiais play in Gaussian quadrature. However in general

Galerkin approximations seem preferable since they :-ast be used anyway to

choose among the many possible discretizations associated with a given

* quadrature rule, and to perform interpolation within the interval or extra-

polation beyond it.

To test the actual inversion of noisy data, the algorithm of section 3,

with {p2 as basis functions, was used to invert the following data
k

* corrupted with random noise:

g1 (v) = sin 2ITv , v (5.10)

si Tv

(v) = 2(sin _v , vI V1< (5.11)

These functions can be interpreted as the point spread functions (- diffraction

images) caused by an aberration-free slit aperture in coherent light and in-

* coherent light respectively. The true solutions to the inversion problem are:

G CI'W) = 1 , j <i (5.12)

= 0 , W > 189

-0.
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-0 .

GW) 2 (1 - .WI) Iwi <1

- o >1 (5.13)

The G's are the corresponding optical transfer functions in the diffraction

imagery interpretation. In both cases c =1. The calculated inversions were

compared to the true G. (-) on <j l, and the approximate extrapolations
1

of Equation (3.26) were compared to the true gi (v) on jvj 44.
-2 - "

We first applied the algorithm to noiseless data, choosing 
6 =1, E =10 2

and K(N) = 40 for g K(N) =80 for g2 (in both cases RK(N)K(N) -P P

< C). The resulting approximations to Gi (w) coincides with the true G. ..-

to well within graphical accuracy. The approximate extrapolation to g (v)

also coincided to the true gl(v) to within graphical accuracy. The approxi-

mate extrapolation to g2 (v) is plotted in Figure 1, te solid line is the

true g2 (v).

To simulate the presence of noise in the data, whenever a value of g(v)

was required in the numerical integrations used to calculate the components

Ck =(g,p2) a random perturbation was added. That is

g (v) g(v) +cEi max Jg(v)l (5.14)
viEc

was used in place of g(v). The constant e denotes the noise level, . is

a random variable uniformly distributed over [-1,1]. For this artificial

noise, the error level C of the algorithm was taken to be the C in Equation

(2.8). Since we had no prior expectations on the accuracy of the inversions,

the error tolerance 6 of the algorithm was taken to be unity.
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To test the kobuhtn4 of the algorithm, reconstruction of data with

different random perturbations of different noise levels were made. The same

K(N) as in the noiseless case were used. Table 4 lists four reconstructions

of G (w) from data with 1% (i.e., C= .01) noise level; there is approximately

a 5% maximum deviation from the true value. Figure 2 shows four reconstructions

of G (M) from data with a 3% noise level; there is now a 25% maximum deviation
1

from the true value. Reconstructions from data with 5% noise levels were still

recognizable; but at 10% noise levels the error (measured in the energy norm)

in the reconstruction exceeded 50%. Figures 3 and 4 show (see open circles)

the extrapolation of two sample reconstructions from Figure 1. For comparison

the true gl(v) is also shown as the solid line. Because Giy an'd g are

even functions of their arguments, the graphs have been plotted only for the

negative values of the respective arguments.

Figure 5 and 6 show four realizations of G2 (w) from data with 3% noise

level. Extrapolations of three of these reconstructions appear in Figures 7-9,

with the true g2 (v) shown as the solid line. Although the reconstructions of

G (M) appear to be more accurate than those of GI(w), the extrapolation to
2

g2 (v) is less accurate than those to gl(v). This is due to the discontinuity

in slope of G (w) at the origin. Since the approximations to G Mw) are
2 2

sums of small numbers of smooth eigenfunctions, they do not approximate G2 (0)

well as the graphs indicate. This low frequency error in the w domain is

then transformed into high frequency errors in the v domain, resulting in

errors in the extrapolation.
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The analysis used in defining the "trustworthy" component of G, and a q

trustworthy Galerkin approximation, is WOut cahe in nature. It is therefore

reasonable to supply the algorithm with smaller e or larger 6 than a

p'LOQ) noise levels suggest (as was done here) or use a different filter in -

Equation (3.25). However this cannot be made precise without some .*

*statistical statements on expected errors.

S7
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*TABLE 1: Distribution of singular values, and required basis size for

desired accuracy when e .02

*C N(e,c) L. 3Cc Cc)L(,C

-. 5 3 3 20-30 3-10

-1.0 7 7-9 40-50 10-20

1.5 13 13 -15 >80 20-40

2.0 20 23 -25 >80 40-80
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TABLE 2: Distribution of singular values, and required basis size for

desired accuracy when e .002

1 2 3

-. 5 4 5 -7 >80 10 -20

*1.0 9 9-1 >80 40 -80

*1.5 15 19-23 >80 >80

2.0 22 31 -35 >80 >80
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TABLE 3. Distribution of L(E,c) for approximations based on Gaussian

quadrature.

c L(.02,c) L(.002,c)

.5 4-8 4-8

1.0 8-12 8-12

1.5 14-18 18-22

2.0 30-34 30-34
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TABLE 4: Four Sample Realizations of Reconstructions with 1% Noise.

W G(w) G (w) G() G(W)
-1.0000 .983 .973 1.099 .907

- .9474 1.009 1.010 1.043 1.005
- .8947 1.013 1.021 .995 1.046

.8421 1.004 1.017 .962 1.050
- .7895 .991 1.007 .944 1.035
- .7368 .980 .997 .942 1.013
- .6842 .974 .990 .952 .993
- .6316 .975 .989 .971 .980

--- .5789 .980 .993 .995 .976
- 5263 .988 1.000 1.017 .979

7- 437 .999 1.008 1.035 .988

.4211 1.007 1.015 1.046 .998- .3684 1.013 1.019 1.048 1.007
- .3158 1.014 1.019 1.042 1.012

I- .2632 1.011 1.015 1.028 1.014
.2105 1.005 1.008 1.008 1.012

r-- .1579 .997 .999 .987 1.007
.1053 .988 .990 .968 1.001

- .0526 .982 .983 .953 .996
0 .978 .979 .945 .993

00
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-~0.2-

02 01 0

Figure 1: Extrapolation of g2 (v) ,see open circles, corresponding

to a noiseless situation.
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Figure 2: Four sample realizations of the reconstruction 
of G (W)

in the presence of 3% noise in (v).
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Figure 3: Sample realization extrapolation of gl(v) corresponding

to solid line in upper half of Figure 2.
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Figure 4: Sample realization extrapolation of g (v) corresponding

to dashed line in upper half of Figure 2.
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Figure 5: Two sample realizations and of the reconstruction

I 6

of G (w) in the presence of 3% noise in 9(v).
2
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Figure 6: Two sample realizations (.-and -)of the reconstruction

of G (w) in the presence of 3% noise in 9^(v).
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*Figure 7: Sample realization extrapolation of g (v) corresponding to

-line in Figure 5.
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Figure 8: Sample realization extrapolation of g(v) corresponding to

-*line in Figure 5.

108



I %

0.6

0.4-

-~0.2

02 0-1 0
0

*Figure 9: Sample realization extrapolation of g (v) corresponding to

- -line in Figure 6.
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ALGORITHMS FOR RECONSTRUCTION OF PARTIALLY KNOWN,

BANDLIMITED FOURIER TRANSFORM PAIRS FROM NOISY DATA:

II THE NONLINEAR PROBLEM OF PHASE RETRIEVAL
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ABSTRACT

Phase retrieval problems are ill-posed, however previous analysis has

focused upon global ill conditioning due to the existence of multiple exact

solutions. In this paper we consider the effects of local ill conditioning

due to the presence of large infinite dimensional neighborhoods of any exact

solution where members are all possible solutions provided there is any un-

certainty in the data. The form of such neighborhoods can be characterized by

viewing phase retrieval as a nonlinear extension of the linear problem of

inversion of the finite Fourier transform considered in the previous companion

to the present work. In particular, we are able to estimate the essential

dimension of phase retrieval problems, i.e. the number of parameters in a

solution representation that can be determined accurately given specified

error levels in the data. Based on these results a modification of the widely -

used Gerschberg-Saxton algorithm is proposed, analyzed, and then used as a

basis for development of more sophisticated algorithms. Numerical results -

are presented on the performance of these algorithms on one-dimensional

problems. The results indicate that although the algorithms may be tuned to

overcome local ill conditioning, good solutions in one dimension are still

difficult to find numerically because of global ill conditioning. However,

the material in the Appendix indicates that in higher dimensions global ill

conditioning is considerably reduced so that the algorithms should be effective

in such problems.
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1. INTRODUCTION

In our companion paper [1], we introduced the problem of numerical recon-

struction of a partially known, bandlimited Fourier transform pair g, G and

considered in detail the model linear problem

Given values over a finite interval al,a2  of a function g(v)

known to be the Fourier transform of a function G(w) with support

contained in the finite interval [bl,b 2], find G(M).

The paper focused on the ill posed nature of this problem and its effects on

numerical solution, an algorithm (filtered singular-value decomposition) was

presented that could be specially tailored to cope with these effects. In

this paper we consider the associated model nonZineaA problem of phaue

tetlreval.

The model problem in phase retrieval is

Given value m(v) over a finite interval [al,a 2  of the modulus of a

function g(v) known to be the Fourier transform of a function G(w)

with support contained in the finite interval [b1 ,b2 ] and the

knowledge that G is a member of some set B, find g(v) and G(w).

The set B represents available prior knowledge on G. In this paper we

study three particular cases: no prior knowledge, G is nonnegative, and

JG(W)) En(w) is known over [b ,b 2. Again our focus is on the ill posed . -
1 2

nature of phase retrieval and the resulting implications for numerical re-

constructions. In particular we generalize the iterated projection algorithm

of Gerschberg and Saxton [2] in such a fashion so that it may be identified

112 I °
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as a first order, gradient type optimization algorithm. We then propose

second order, Newton type extensions of the algorithm and show that the linear

problem arising at each step has behaviour dominated by the behaviour of the

linear problem [1].

The structure of the paper is as follows. Section 2 sets out the

notation employed in the paper and lists the particular model problems used

in illustrative numerical calculations. Section 3 contains a discussion of

the ill conditioning of phase retrieval, focusing on the two causes:

possible multiple solutions and ill conditioning of the underlying linear

operator (the finite Fourier transform). In the Appendix we show that

although in one dimension multiplicity of solutions presents a serious

problem, in two or more dimensions its occurrence is pathologically rare.

Section 4 is devoted to a generalization of the Gerschberg-Saxton algorithm

through restatement of the phase retrieval problem as one of finding the

closest point to several, possibly disjoint, sets. Two particular algorithms

are developed that use iterated projections; their convergence properties are

investigated and their identification with the well known steepest descent

algorithm is established. In Section 5 a number of second order algorithms

are developed from those of Section 4. Each algorithm requires the solution

of an ill posed linear problem at each iteration; we propose that this

solution be found by filtered singular value decomposition. In order to

save on the cost of an expensive decomposition calculation at each step, we

indicate how a partial filtering can be obtained using a block decomposition

of the linear system and a precalculated singular value decomposition of the

11
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finite Fourier transform (fFT) that is constant across iterations. Finally,

Section 6 contains numerical results showing the application of these algao-

rithms to each of the model phase retrieval problem. Tables showing the

relative performance of the various algorithms and graphs of the approximate

solutions generated are presented and discussed.

The results indicate that in one dimension the multiplicity of solutions

induces poor global conditioning so that the significant improvement of

second order methods over first order methods is restricted to small local

neighborhoods of the solution. Therefore the simplest algorithms appear to

be the most cost effective, however we feel that in higher dimensions, with

the increased likelihood of unique solutions, that higher order methods will

come into their own.
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2. SOME MODEL PROBLEMS IN PHASE RETRIEVAL

" The analysis of this paFer is set in the function space L2 R) with the

standard inner product ( and norm 1-11. The Fourier transform

12 2
T:L 2R) -L (R) is here defined to be

C 2"r i vw

- g(v) = (Jg) (w) e G () d, (2.1)

2
Subsets of L 2R) will be denoted by A. or B., and the projection operator1 .

2
PA: L OR) +A onto a pa2tc CUtOA set A is defined by

A|

P Af = g o- If-gI1 = min If-h11 (2.2)
hEA

P f is termed the projection of f on A, projections are assumed to exist
A

and be unique.

.•The interval [-1,1] will be denoted by I and [-c,c] by cI; cI

2will also be used to denote the subset of L OR) of all functions whose

support is contained in [-c,c]. The associated projection operator is

therefore

(P clf) (v) = f(v) , if vE (-c,c]
ci (2.3)

= 0 , if otherwise

It will be abbreviated to Pc for typographic convenience.

Three model problems, variations of phase retrieval that occur in

physical problems, will be used as numerical illustrations in the remaining -.

sections. They are:

11
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I. Given values m(v) over the interval [a 1 a2] of the modulus of a

function g(v) known to be the Fourier transform of a function G(W)

whose support is contained in the interval [b b 1, find g(v) and
1' 2

G(w). Some relevant references are [2,3].

II. Given values m(v) over the interval [a ,a I of the modulus of a
1 2

function g(v) known to be the Fourier transform of a real, nonnegative

function G(w) whose support is contained in the interval [b,b ,
1 2

find g(v) and G(w). Some relevant references are [4.5].

III. Given values m(v) over the interval [a ,a 2] of the modulus of a

function g(v) known to be the Fourier transform of a function G(w)

whose support is contained in the interval [b ,b I and whose modulus
1 2

n(w) is given over [b ,b 2, find g(v) and G(w). Some relevant

references are [6,7].

These two moduli m(v) and n(w) may only be known to within some accuracy

E, that is mea u2Lemen5 m and R are available such that""

In this setting all problems and errors are invariant under translation

and scaling; so, as in the previous paper i1, the sets [a ,a ], [bl,b
1 2 1 2

can be transformed into. cI where

1 1/2C [(a al)(b b)] (2.5)

Upon defining the sets

116



A E{g: (P g)(v)I (PM) (v)1 (2.6a)

B1  cl (2.6b)

B - ciln {G:G>O}- (2.6c) .

'ci fl{G: (P G)()I = (P n) (w)} (2.6d)
3 c C

the i-th problem (i 1,2,3) can be rewritten as:

Find g,G such that g= .G, gEA, GEB. (2.7)
1
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3. THE ILL-POSED NATURE OF PHASE RETRIEVAL

In the previous paper we indicated that the phase retrieval problem is,

in general, ill-posed in that it fails to satisfy Hadamard's definition of a

well-posed problem (the definition is repeated here for convenience). -I

VeS&intion: A problem is well-posed if the solution

a) exists

b) is unique

c) depends continuously on the data.

If any of these conditions are violated it is ill-posed. -

We now consider the ill-posed and ill conditioned nature of the phase

retrieval problem in more detail with particular regard as to the consequences

for numerical solutions. We wish to show that it is a failure of condition c

"" that is the main source of difficulty.

To illustrate the point we briefly review the prototypical linear

problem and its solution as described in the previous paper, the inversion of

a compact linear operator by use of its filtered singular value decomposition

(SVD). Let H be a separable Hilbert space and Ji:H-1 H be a compact

linear operator with an SVD{oi,Oi,i. If g is an arbitrary member of H

with the expansion

*g a ai. a i a (3.1)
i=O i=O

then the equation XG =g has the formal solution

118
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b"0

(a, (3.2)
i=0 -

The solution G is in H if and only if j=0I ia 1 <co. Because

the singular values a. tend to zero this is a stronger condition on the

coefficients a. than Eq. (3.1), so a solution does not exist for every right

- hand side g. Thus the problem is ill-posed with respect to existence of

solutions. The solution is unique if and only if JX has a non-trivial null

space, which is true if and only if 0. > 0 Vi. The solution does not depend
1]

continuously on the data. If a small perturbation C is made in a high

frequency component a. of g then a perturbation (/o.) is induced in G; S

this can be made as large as desired by increasing i. Thus for any given E,

6 and solution pair g, G there exists an infinite dimensional set of

solutions g, G such that

= l ill I~ I< E, IG -Gall> 6 .(3.3)

It is violation of condition c that makes numerical inversion of

compact operators so difficult. In problems arising from physical systems

existence of a solution is a prerequisite for making the measurements;

failure of the subsequent mathematical model to have a solution is usually

due to measurement errors in g or Jr. Thus non-existence is really a

consequence of discontinuous dependence and unimportant in its own right.

Likewise the existence of multiple exact solutions is not in itself a problem.

In most cases the nullspace can be predetermined theoretically and the

operator restricted to the complement of this space. If the restricted

119
.....................................................

.....!



operator had a bounded inverse, numerical inversion would present no further

difficulties.

Solution by filtered SVD directly addresses the problem of discontinuous

dependence on the data by identifying the infinite dimensional subspace S

over which Jf' produces distinct (but very small) variations; then restricting

the approximate solutions to the complementary subspace S over which

is uniformly continuous. This decomposition, effected by the filter,

corresponds to choosing the first N terms in a generalized Fourier expansion

of the solution G; as such it has a wide variety of uses and interpretations.

In the nonlinear problem of phase retrieval the traditional investiga-

tions of ill conditioning and ill positioning have concentrated on the

questions of existence and uniqueness [3 3. Necessary and sufficient

conditions that m and g must satisfy for existence of a solution G are

given by the Paley-Wiener theorem. For one-dimensional retrieval problems the

form and existence of multiple solutions is a consequence of the Hadamard

factorization theorem (a result first derived by Akutowicz [ 8, 9 1. An

extension of this theorem gives necessary conditions for existence of multiple

solutions in two-dimensional problems. A detailed exposition appears in

Appendix A.

Although questions of existence and uniqueness have some influence on

the behavior of numerical algorithms, as with the linear problem discontinuous

dependence on the data dominates. Existence or non-existence of solutions is

again just a simple consequence of discontinuous dependence. If multiple

solutions exist but are uniformly separated, their existence will influence

120
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the initial iterations of any algorithm but the final behavior will be deter-

mined by the question of whether the problem is well posed in a neighborhood

of each solution or not. As we shall show the phase problem is never well

posed.

However existence of multiple solutions may be a stronger contributor

to ill conditioning than indicated abuve. As shown in the first section of

Appendix A, in the one-dimensional problem there may exist an infinite

sequence of exact solutions GN with a limit G., corresponding to a

sequence of finite products of Blaschke factors and the limiting infinite

product. In this case the solutions are not uniformly separated and any

algorithm will have difficulties in the neighborhood of G.. Fortunately,

for the reasons outlined in Appendix A, in two-dimensional problems multiple

solutions appear to be rare and the limiting behavior described above unlikely

in the extreme, unless symmetry considerations reduce the problem to an

essentially one-dimensional form.

Proof of discontinuous dependence on the data is difficult for an

arbitrary nonlinear equation 2(G) =g. The most widely used criterion

is that the Frechet derivative D(G) of 2 at the point G be a compact

linear operator. The phase retrieval problem may be formally stated as that

of finding a solution pair to the equation

Y(G) E IP cPcGI E (.0oPc rPc)(G) = IPcgI= m (3.4)

where the nonlinear operator 2 is defined by

2(g) g (3.5
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so that 2 is the composition (o) of and the compact linear

operator P ~JP * The Fr~chet derivative D (g) of Y (g) is the bounded
C C 11

* linear operator defined by

D (g)h 3Re(g*.h)/Igl (3.6)

* The Fr~chet derivative D(G) of Y(G) is the operator D (G) oP JP; since
1c c

this is the composition of a bounded operator with a compact operator it

follows that D(G) is compact and the phase retrieval ill-posed.

Since D(G) varies with G the decomposition by filtering of the

underlying space into a subspace S(G), over which D(G) ib slowly varying,

and its complement S (G), is not a global decomposition. Instead S(G) and

S (G) vary with G and serve as tangent planes in the definition of mani-

* .L. --

f olds 4'and .' over which g'(G) is slowly varying or Y2 is uni-

formly continuous. However as ,*Y is not linear, generation of an approxi-

tmate solution GE(ai does not convey the information that is contained in

generation of an approximate solution from a linear subspace S and is also

a much harder problem.

The usual approach taken to overcome this problem, and to deal with n""

measurement noise, is to reduce the ill posed problem to a well posed problem

by regularization; that is a parameter >0 and functional SI(G) are

chosen and the regularized solution G found by minimization of

1l (G), yo + 4 (G) (3.7)

is taken as an approximation to G. As stated the parameter ad and

functional w do not appear to depend on measurement noise or the problem
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form in any -obvious way, but the following theorem due to Tikhonov [10]

elucidates their relationship

Theorem 1: Under certain mild conditions on , 2, G and g, then

G minimizes II (G) -gl + Xn(G)

if and only if

a) there exists 6> 0 such that

G minimizes IIlT(G) - gl subject to Q(G)<6

b) there exists E X > 0 such that

G minimizes Q(G) subject to II'(G) - gll <E

This approach is explicit or implicit in many of the algorithms presented in

the literature [11].

* ' Solution by regularization does not identify an approximating subspace,

or even a submanifold, such as that found by filtering; settling rather for

the (less informative) identification of sets A -{G: IIL(G) -glI E} and

A6 -{G: SI(G) <5} that contain the solution G. However the phase problem

does have a natural decomposition of the solution space into subspaces rather

than submanifolds, encouraging solution by filtered SVD rather than byS!
regularization. This follows from the form of D(G). Upon definition of the

subspace

T - {h: arg h=arg g} (3.8)

it is easily shown that

D1 (g)h = ei (arg g~h hET

= 0 hET1
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Consequently Dl(g) has a well defined null space T and a bounded inverse

on the complement T. Therefore the ill conditioning of D(G) is essentially

dueto the operator P TP studied in the previous paper. This suggests

that the global decomposition of H into linear subspaces S and S used

there in inversion of P JP G = g by filtered SVD will also be appropriate
c c

in the nonlinear problem. This idea is further developed in Section 6.
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4. ITERATIVE METHODS - -

The formulation of phase retrieval as the search for a common inter-

section point, given in Equation (2.7), suggests use of successive projection

algorithms for its solution. The simple structure of the projection operators

PA and P for the sets A and B. appearing in Eq. (2.7) indicates that
1

this class of algorithms will be computationally efficient. Such algorithms

are presented for the general problem in [ 12] and were first applied to phase

retrieval by Gerschberg and Saxton [ 7,13). However these algorithms were

originally derived and analyzed under conditions such as existence of an inter-

section point, so they should not be applied directly to the phase problem due

to the presence of ill conditioning. We therefore propose and discuss modi-

fications more suited to the ill-posed nature of this problem.

4.1 The Gene.Aic Atgoui..thm

Let B. be a collection of M sets with associated projection operators
M

P.. Since ill conditioning implies that n B. can be empty, we attempt to1 ~i=l 1 --

find an x that is closest to all sets B. and which reduces to a common

intersection point i6 one exi-6t6. Therefore we seek to minimize
Ig

F(x) E M x-P'xU2 (4.1)
1i=1

The simplest iterative algorithms for minimization of F(x) can be
S

considered as pointwise approximation. For an arbitrary point x the points

b. =P. x are point approximations to sets B. and induce an approximation
1 1 1
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M

G(z,x) = M l-b 112 (4.2)
i=l1

to F(x). The algorithm then constructs a sequence x, where x is
n n+l

determined from x after minimization of G(z,x ).
n n

Le-mma 1: G(z,x) has a unique minimum at y=M Px and if y#z

then G(z+X(y-z),x) <Gz,x) VYXE (0,2).

P)wo 6:

M 12 M +Mz12
G(z,x) = ib.i -2 (b.z+Mz

(4.3)

| > 11b i l -1 2M • Iz, + gM ll , 2  "

i=1 "i-• l-

The quadratic in lIzil is minimized at lIzlI = Uyil, and the inequality is

strict unless z =y. Moreover

G(z+X(y-z),x) = lib. -zi 2-2X (Y-z,b. -z) +X 2Mily-zl2
i=1 1i=l "

M lib. - zi 2 
- (2 - X)XMIly - zil 2  (4.4)

i=l 1

22

< 11lb. zU2  =~ ~

since z My and X E (0,2) imply that X(2-X)Ily-zI 2 >0.

Pu'wpo ,it .. n 1: The sequence {xn  defined by the iteration

0n
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M
n M i n

1~ 1 (4.5)

X n+ I = x +Xn(Yn- xn ) , X E (0,2)

satisfies

F(x n+) <F(x n) or Xn+l =x (4.6)

If the projection operators are single valued then xn+,= X implies that
n n

Xn+k =x Vk. If the sequence x has a limit point x at which the pro-n n

jections are continuous and

0 < lim inf X nK lim sup X < 2n n

then x is a fixed point of the iteration.

P,4006" .
M M' - .;

F(xn) M - Pix 12 <  M 1  P X
= ' n+l i n+l n in"i=l i=l. .•

- G(x +X (y n-z ),X) (4.7)n n

G(xnX n ) = F(x
no n n

From Lemma 1 the last inequality is strict if x y Therefore
n n

F(xn) =F(xn ) if and only if y =x if and only if x x implies
n+l n n= n n+l n

yn+l = Yn' consequently xn+k x for all k. Let x be a limit point of

2x n , if i is not a fixed point then 11j- X =S>0. By continuity of I11

nn
1 nk

a) lim F(xnk) = F(lim xnk) = F()

b) lira Ynk--y.'

1
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Now choose xN sufficiently close to x such that

12

IF(xN) -F(x) I < _ U2ME (4.8)

and

fl NXI2 C
-hr x 1X 2 (4.9)

where

-- min[lim inf \ , 2-lira sup X ] (4.10)n n

These inequalities imply

F(xN+) < G(xWl,XN) = G(xN,xN) X (2 - )MIIyN - XNI 2

1
< F (xN  - L e (4.11)

< F (i)

But as F(xn ) is always decreasing, this implies the contradiction
n

lim F(x ) < F().nk

Existence of limit points and convergence of the algorithm from an

arbitrary x0  cannot be guaranteed without further rather restrictive global

conditions such as compactness of the sets B. and continuity of the pro-i

jections P.. However examples showing failure of convergence after violationi

of these conditions are somewhat pathological; in practice, although the

conditions may not be met, the algorithm almost always converges. Apparent

failures are usually traced to ill conditioning not to violation or near

violations of these conditions, therefore we assume henceforth the existence S

of limit points, leaving determination of sufficient conditions for this
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existence to the analyst, and turn instead to an alternative characterization

of these limit points and the algorithm itself.

4.2 Succ"6ive Projections az Steepest Descent Atgonthm,

To demonstrate that the generic algorithm of Proposition 1 is the

standard steepest descent algorithm applied to F(x) we need the following

definition: Let f:H-41R be a real valued function on a Hilbert space H.

Then the gradient Vf(x)E H of f at x is y if and only if y is the

unique vector satisfying

lim f(x+z) - f(x) - (z,y) (4.12)
rzII li z 12

2The gradient VF(x) is the sum of the gradients of lix-P.xll We next1

require

Prwpoztion 2. If there exists a I> 1 such that

P (P x +)(x-Px)) = Px (4.13)
A A A A

and PAx is single valued, then

A2

V (Iix-P Ai2) = 2(x-P Ax) (4.14)

PA'Of: It suffices to show that for some constant c the following

inequality holds

Illy- 112 -llx- PAxi 2  2 (x- PAxY - x) < cIx-yi 2  (4.15)

We first note the pair of inequalities.
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Iy -pA Ily~p X12 IIy-P yli+2(Y-P y,P y-P x)+IIP x-P y11 2
AAA A A A A A

2 2 2 2
Ily -P X11 >)Ily -P yI 11 Iy -P x11i s2 (y -P x,P x -P Y) + I~p x -P yil1 (4.16)

A A A A A A A A

and the resultant inequalities

2(y - y PyPX) >, lIP y -P AiI (4.17)
PAY'A A A A

2 (y-PAx,PAX-P y)~ I -P x12 (4.18)
A A A) IAY AXI

% We also require the equality

2 2
Iy-P yII -Ox -p Axli -2(y -x,x -P AX)

* Ix-y1I2 +lip x -P A i2 + 2 (y-xP Ax -PAy) +2 (x PAxPAx PAY) (4.19)

We next bound liI x- P ylI in terms of Ilx- yI. By the hypothesis of the
A A

* proposition

lip Ax + (x -P AX) -P AyII lip x + (x -P AX) -Pll!

2 2-X Ilx-P Al (4.20)
A

Fo which in turn implies

2IlI x -P yll 2X (P x- x,P x -P y) .(4.21)

A A A A Ay

*Now use of Equations (4.18) and (4.21) gives

lip x -P yl 2  ( -, -P y
A APAX 'Ax A)

2 - (P A x -xIP A xPAY) + 2 (x -Y Fp~x PAY)

<1 lip x-P ylI +2llx-yllllP x-P yl(4.22)
X A A A Ayl

Consequently
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AA

lP x -P Py "l <( A- Ix -y (4.23)

which is the sought-for result. To establish the lower bound on the inequality -

in Eq. (4.15), reverse x and y in Eqs. (4.16) and (4.17), substitute the

new Eq. (4.17) into Eq. (4.19) and use Eq. (4.23) to give

2 2 -i2liy-P yl -Alx- Pxil 2(y- x,x- P Ax) >- +lix-yl2 (4.24)
AAA

For the upper bound, we note that the left hand side of Eq. (4.15) can be >1
written as

-Ily - 2_PY p X 2 _2 (x - y,PAyPAx) - 2(y-PAyPAy-PAx)

-2(x-y,y-x- (PyPx) (4.25) iK 1
upon using Eq. (4.19) with x and y reversed. Further substitution of

*
Eqs. (4.17) and (4.23) yields -

2 2
ly - P yl -ix - Pxl - 2(y-x,x-P x)

A A A

<--P iy - A 2  x 2 +211x-yll lip - xii (4.26) -

+IIPAY PAxi+ixiiI i+ IIPAy PAxiI I Ilx-yi

which completes the proof.

This result is sufficient to show that

M '-
VFWx 2 (x-Pix) =2M(x-y) ( 4.27) '..

Hence the directions y n- Xn used in the algorithm of Proposition 1 are

steepest descent directions for F(x). Furthermore the result that, at a limit

point ,= shows that F() 0 so is by definition a stationary point of F (x).
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* 4.3 The Reutricted Projec#tion Atgot..thm

In many reconstruction problems considerations such as computational

complexity and firm restrictions on the functions g and G argue for the

iterates being restricted to one particular set, BM say. We now show that q

the natural modification of the generic algorithm still produces a sequence

with decreasing function values whose limit points are stationary points of

F(x), with x restricted to BM.

Pupoz Lon 3. If the projections P. are continuous and unique then the

* sequence xn E BM defined by

M-1
Yn (M-i) Px n

(4.28)

Xn+ = PM(x n + n (Yn-xn n E (0,i)

satisfies F(x ) < F(x n ) or x+k x for all k. Furthermore if x is a
n+1 n n n

limit point of xn , then VF(i) is normal to the set BM-

P&oo: The first step is to establish a bound on (Xn+l- Xn' Yn-X ) Let

z = X +X (y  x) (4.29)

then

2 2 2'ix z i lix n x + x -z + (X -x x -Z ) (4.30)
n+1 n n+1 n n n n+l n n n

and

2(x n+1 - Xn, Xn - Z n) 2X n (x n+1 - Xn'Yn n
nn n

= lix -x 112 +1x Zi l -x znU . (4.31)
n+J. n n n+1l

13
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Since PM z~ w e have that

2(x -X y -X X > lx -X 2 (4.32)
n+1 nt n n A n+l n

n

Therefore

M-1
F(x~ 1  < P IPx - X 2

n+ 1 n n+l

M-1 2 -x1 2x- M1Ix -l
ip n 1 2 (i n Xn X -Xn+1 +(1)l n+1 xn 1

(4.33)
=F(x n) + (M-l1) (x n- x ,~l2y n- x n- xn1

2
F F(x n)+ (M-1) 2(x n x n 1, -ynx)n+ lix n- x n 1l

< F(x) + (M-1)1~ h -X11
n A, n+l xn

n

*where the last line follows from Eq. (4.32); consequently

n+1 n

since A n<1. Furthermore the inequality is strict unless x +l =x n Unique-

ness of projections ensures that x+ =x implies that xk =x Vk. Letx

be a limit point of x ,r then continuity of P M implies that iEB Mand

K M- 1M
2 VF(i) = 2(i-P ~ 2 2(M-1) (i-j; (4.35)

Since xis a fixed point of the iteration (the same arguments as used in

the proof of Proposition 1 shown this) then P My =x and so the sphere

S E{z:Ilz- 1<li- ill} must satisfy sAEBM =0. But the sphere has a tangent

*plane at xso EM also has a tangent plane there; since y-x is the normal

to this tangent plane then -i =VF(i)/2(M-l) is normal to E M.
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If the set BM is convex, then the condition A E (0,1) can be replaced by

X E (0,2). If BM  is a linear subspace then PM is a linear map, so for any
n

P (x + (y - x P x +XPM(yn - x ) EB M  (4.36)i M(n + (n Xn) ) Mn n n M

Thus a unique search direction PM (y n x ) is defined regardless of A. AMn n. -"

line search can be used to find the minimum of F(PMX +XPM(Yn-x n )) as a
M n n n

function of A.

4.4 ReutpLcted ProjectionS in Pha~e RetOievat

The restricted projection algorithm is especially suitable for the phase

retrieval problem for two reasons. The first reason stems from the requirement

that G(W) cI; this set is a linear subspace and so is a natural choice for

the set BM of the previous subsection. The second reason is that such a

choice is efficient. The problem as stated gives information on g and G

only over the sets cI, we will show that the restricted projection algorithm

* with BM = cI requires knowledge of gn and G at each iteration only overMnn...

cI, even if the solution g(v) is required over the entire real line. With

the restricted projection algorithm, only the values P g are used until the

iterates converge. At this point P can be extrapolated to the whole line.

The existence of efficient algorithms for phase retrieval has not always been

realized, several authors, [141, have proposed schemes requiring storage of

0
values of the iterates from out6ide the interval cI.

To show the efficiency of the algorithm, we present the details of the

restricted projections arising in model problems I-1II. Upon defining the set

134

S - " -- - N " & r " i m . l , J -- - "- : : " , " "" . " " ,• .-



.A

= A G: G Jr g, gEA), it follows that gEA if and only if 6

-g - G E ,. -A. Since the Fourier transform preserves L norms, P G

is the closest point in J- A to G if and only if 9P G is the
-A

closest point in A to g, therefore q

1AG =T P (4.37)
-1 A

PAg is easily shown to be

AA
i~~e arg g (v) ".9

(P g) (v) =,mvvce ,(4.38)
(4.38) -

= g(v) , otherwise

Therefore, after noting that PcPA P cP A P c  and restricting G to cI,. .

P = g- P g+P cP A P c g  (4.39)

A c cAc

and

P P 1-G = P c (9G-P cG+Pc P AP cG)
(4.40)

-PC -IPcrPcG + Pc -IPcPAPcjrPcG "-l -l
c c c c c c c

As the remaining sets B. are by definition contained in cl, it

follows that P P =P For the record these projections are

PBG = PcG (4.41)
B1

(PB2G) (w)= (Re G) (W) , if (Re G) (w) >0, wE cI

-0 ,otherwise (4.42)

= iwe argG (W)
(PB3 G)( n(w)e, if wEcI

- 0 , otherwise (4.43)
AI

135

r -.



I-I

For typographic convenience we will let P -Pit PB - P2 and

JT A 2
P 3P ; also we will denote the restricted projection algorithm using these
B 33

projections and the set BM= cI by RP. Therefore the iterates xn become

iterates G EcI. Further we shall denote the search directions y -x byn n n

H. For RP, H is given by
n n M

H = ' (P P.G -G ) (4.44)niM'l c m n -

The calculation of H requires values of g and G only over cI after 6
n n

use of Eq. (4.40) for P cP .

4.5 Itt Conditioning and Line SeaAches

The geometric view of the RP algorithm developed in this section sheds- -J
new light on some of the problems encountered in previous use of projection -

algorithms, [ 7 ], in particular that of constant but small decrements in

F(G n). This may be due to local ill conditioning of the problem; with the

geometric interpretation that the sets .- A and B are nearly parallel at

Gn , either intersecting at a very acute angle or failing to intersect at all.

Figure 1 shows simple two-dimensional examples of such problems. In both

cases shown in Fig. 1, Hn  is very small so that if X n (0,2) then G and

G are nearly coincident even though G is far from the true minimum.n+1 n

The relation established between projection methods and steepest

descent methods opens up a wide range of algorithms already developed for

gradient methods. In particular, we note that calculation of F(G
n

requires evaluation of PcPiGn so we may simultaneously calculate

g
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d F(G + XH (VF (G + XH )H
dX n n n ni n

M
= 2 (G +XH -P. (G + XH )H

n n 1 fl nl n

= 2 (G +XH P P (G + XH )H ) (4.45)
n n c n n n

* because

H n P cH n' (G,P cH) (P cG,H) (4.46)

Therefore a quadratic [151 or cubic [16) line search routine will improve

6convergence beyond simple variation of X in (0,2).
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5. SECOND ORDER ITERATIVE METHODS .

The iterative algorithms for minimization of F(G) discussed in the

previous section were developed from first order truncations, either a;Troxi-

mating F(G) by its gradient ?F(G) or taking pointwise approximations to

the sets A and B.. In a similar vein we now construct second order algo-
1

rithms by approximations involving the Hessian W(G) of F(G) and affine

approximations to the sets. A succession of such algorithms is constructed,

increasing in accuracy and in complexity up to the standard Newton's method

for minimization of F(G). In each algorithm a linear subproblem must be

solved at each stage; typically the subproblem is ill-conditioned and " -

requires a filtered inversion. The geometric viewpoint shows that the system " .

can be taken to be a linear least squares problem whose solution is the

closest point to a collection of affine subspaces approximating the sets i

and B.. We then demonstrate that in this new form the system may be pre-1

conditioned so that a filtered inversion is possible without having to

calculate an expensive singular value decomposition at each stage.

Unlike pointwise approximations, the affine approximations to the sets

are not necessarily contained within the sets, therefore we cannot guarantee

that F(G +XH ) <F(G ) for XE (0,2). However, it is often possible to
n n n

show that the search directions H generated at each iteration are descent
n

directions, i.e. (d/dX)F(G +XH ) <0. In the interests of brevity only the
n n X=O

form of the algorithms is presented here, proof of these and other similar

results are left to the reader.
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5. 1 The PLt~tia2 A6ne Atgoti.thrn

As an introduction tD the use of af fine approximations we present a

simple extension of RP. In RP at the n-th iteration the set A is

approximated by the point P so that the restricted projection P P G

is given by Eq. (4.40). However membership of g in A is determined only

by the modulus values of g across cI; outside of this interval there are

JT. 1 ]
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(P p SP + (M-I)I) are all greater than unity and less than M. If M=l,
SC C C

then minimization of F (G) reduces to the least squares problemn,

m IIP~ G - PcPAgn11 2  (5.5)

GEcI c .c.

which is the focus of the previous paper. In this case the ill conditioning

of the finite Fourier transform P cc forces the use of a filtered approxi-
c c

mation L to L in which L is the projection of L onto the span of
n n n n

the first few eigenfunctions of P~c" Since the same linear operator

appears at each iteration, the eigendecomposition need be calculated only

once. As the range of the projection remains unchanged, an extra global 0

restriction on the iterates to this span is implicitly imposed.

Henceforth the algorithm with search direction given by Eq. (5.4) will

be termed the PA algorithm.

5.2 The Gau~s-Newton AtgoAithm j
Having introduced the geometric viewpoint of algorithms as based upon set

approximations, we now look at some of the standard nonlinear least squares

algorithms in this context. For solution of the model problem

M
min F~x) = mf i(x) (5.6)

-'N IRN i=l

a popular choice of iterative algorithm is the Gauss-Newton method [17J

in which at the n-th iteration the search direction z is given by then

least squares minimum norm solution to the linear system
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(X (5.7) L .
n n n

where f( ) is the vector in IM with components f. ( ) and J( ) isn i n n

the M X N matrix with entrie,.

= E- f " (n) (5.8)2
ijn Dx n.

2
In the present paper x-GEL2 CR) and f. (x) I1x-P xIl; the gradient of

f. (x) as defined by Eq. (4.12) is1
1

(Vf.l) (x) = (x-PiX)/IIx-P.IXU (5.9)

so that the Jacobian is now an operator from L 2R) into JM defined by

=(x)z (x-Pixz)/lx-p xil . . (5.10)

Therefore z is now the least squares, mitimum norm solution to the underde-
n

termined system, Eq. (5.7), with g(x) replacing J(Xn); such a z gives a
nn n

descent direction for F(x).

We next elucidate the affine approximation implicit in this algorithm.

Since P.x is the unique closest point to x from B. it follows that ifi n nl 1 '-

SSi(x ) is the sphere inu

Si(x n ) F {z:UIx -Zil < lix -P.x II} (5.11)
i n n n i n

then B. f S. (x ) =P x . At P.x the sphere has a well defined tangent plane
i n in in n

Ti xn) - i +z : n -P.x ,z) = ((Vf i ) (x n) ,z) =0} (5.12)

". ]
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This must also be locally a supporting hyperplane for B. at P.x ; Fig. 2

shows a simple two dimensional example. T (x ) can be taken as an affine
3. n

approximation to B. at the n-th iteration, in which case the least squares,

minimum norm solution to Eq. (5.4) is the closest point in nM T (Xn) toi= i n

x n . Since T. (x n) has codimension one, this intersection is always nonempty,

being in fact an infinite dimensional linear subspace.

Although we bring this algorithm to the readers attention we did not

implement it for two reasons. The first is that the subspaces T. (xn ) are
1 n

poor approximations to the sets B., containing no further information than1

that already available in the projections P.x . Second for our model

problems M43, so that Eq. (5.7) is of very small dimensions. Therefore the

search directions z are not likely to be very different from those of RP
n

or PA.

5.3 Newton'.6 Atgoitthm

The standard second order Newton's algorithm for Eq. (5.6) is based on

the approximation of F(z) near x= x by a truncated Taylor series
n

expansion
S1 (_n 2FF(x) F(x I +VF(xn) (x-xn) + - (x-x )V F(x n ) (x-x (5.13)

n n n 2 n n n

- . 2If V F(X ) is a positive definite matrix, then the approximation is minimized

at the point y n= z + x , where z is the solution of
n n n

S

V2F(xn)z -VF(x) (5.14)
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In phase retrieval problems this linear system is ill conditioned and the

Hessian often has negative eigenvalues. Therefore to ensure that a descent

direction is chosen for which Eq. (5.13) is a good approximation, an eigende-

composition of the Hessian must be calculated and a filtered solution z
n -

used. This approach must be taken if Eq. (5.14) is solved directly. However,

as we will show, a geometric interpretation allows the equation to be rewritten

in a form in which filtering can be performed without the cost of an eigende-

composition at each iteration.

2
We begin by noting that the quantities VF(x ) and V F(x ) are givenn n

by

M
VF(x) = 2 (x n -P i x) (5.15)

n i=l n~

M
VF(X) = 2 (I- '(Xn)) (5.16)

n i=l n

2
where the operators *' (x ) are the Hessians of the functions f. (x)= Ilx-P.xI1 n 1 1

evaluated at xn . They are defined by
n

Ae(x L 2OR) L2 CR)
1 n

(5.17)
P (x +ay) -P (x )

j(x )y = lim n 1

I n (1-
Conditions on the set B. that guarantee existence and boundedness of the

operator Jr are quite complicated [18 ]. For the purposes of this paper we 0L 1

shall assume that Ji(x ) exists. The only further properties we require are
1 fl

that J. is symmetric and that
1
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!if

,(x )(x -P.x) = 0 (5.18)I n n 1 n

The Hessian implicitly defines a first order approximation to the pro-
jection operator P. at x by

S1 nl

P. x st P. x +, . (x ) (x-x ) (5.19)-. -
1. 1n 1 n n

which in turn defines an associated affine approximation U (xn) to the set
1n

B. at P.(x1 1 n 3

U. (x) {P.x +z :zERange .(x )} (5.20)
1 n i n 1 n

Ui (xn) has more structure than the previous approximation Ti (x ) because

ei(x) is not just a projection operator with range U. (x n ) -P.X but isi n 1 n i n

also a contraction (or expansion) mapping about P x depending on whether
in

B. is locally convex (or concave) in particular directions at Pixn. Figure 3

shows a two-dimensional example of Ui (xn ) for B. a sphere; di (x) is
1 n1

obviously a contraction mapping. Therefore at the n-th iteration we choose a

search direction zn n- x where y minimizes the quadratic approximationn0 n n3

M
F(y) As Ily-P.x -de.(x )(y-x )112 (5.21)

i=l in 1 n n

to F(x). The geometric view of yn is that it is the "closest point" to the

collection of subspaces Ui (x ) with the distance measured, not in the

2standard L metric, but as a sum of new metrics. Each new metric reflects

the degree of curvature of the set Bi  at Pix n and therefore the accuracy

of the affine approximation to B. at P.x n
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The direction z of Eq. (5.21) is equivalently described as the least .n

squares solution to the block system

.1.;i:

Z =(5.22)

-I - (Xn -(x -Px)
M n n M n

Equations (5.22) and (5.14) are not the same, so that the search directions

z are different. However, the equations are sufficiently close in form to

show how Eq. (5.14) can be recast in a block form more suitable for numerical

computation. To accomplish this, we note that the normal equations for . -

Eq. (5.22) are

M2) M
(x) z = - (I-X.(x))(x -P x

/ i=n .n n in

M
- (x -P.x) (5.23)

i=l n i n

after use of Eq. (5.18). If the operators I-i(xn) are positive definite,
1. n

1/2then they possess a positive definite square root (I-i(X )/2 which by
1 n

Eq. (5.18) satisfies

(I ji 1/2 i n nP x

- ( -P x )x -P.x (5.24)
i n n n n i n

Therefore Eq. (5.14) can be rewritten as

2 z( I-~ X) /2 1 /2 i[
(x -z (I- (Xn  (Xn - x ) (5.25)

li-i Ii=l 1
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which in turn is recognizable as the normal equations associated with the

block system

(I - (x 1))l/2 _(xn -Plx
1n n 1ln

z = . . (5.26) .

I/2 .-(x -P x
M n n M n

Equation (5.26) has a geometric interpretation, its solution is the solution

to an approximate minimization of F(x) similar to that of Eq. (5.21) using

the same affine approximation U (xn ) to B. but different metrics.

5.4 Ill Conditioning and Fittezing

We noted at the end of Section 4 that line searches could overcome some

simple cases of ill conditioning. We now consider more complicated cases and

ways to alleviate them.

2
The first comes from the fact that L (cI) is not one-dimensional, as

portrayed in Fig. 1, so that the valleys of the surface T -{(F(G),G):GE cI}

will not typically be straight but rather will be curving through space in

much the same fashion as the classical test case for optimization algorithms,

the Rosenbrock function [16 ]. Experience has shown that second order

methods significantly outperform gradient methods in such examples, but that

such features can easily be sufficiently ill conditioned to defeat even second

order algorithms.

The second arises from the existence of the subspace S described in

Section 3 which is, for practical purposes, the null space of PA). If a
cc
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significant component of the search direction lies within this subspace then

a relatively large step can be taken for a very small decrement in F(G).

This may lead to "zig-zags" in which steps are taken backwards and forwards

through S so that the iterates do not appear to converge and yet F(Gn ) is
n

decreasing, albeit very slowly. The presence of S also im[lies that the

2Hessian V F(G ) will have very small eigenvalues corresponding to directions
n

in S (particularly in Hessians from model problem I) so that Eq. (5.14) is

difficult to solve numerically.

These problems can be overcome by calculation of the eigendecomposition

of V 2F(G ), filtering the eigenvalues (which are real since the Hessian is
n e

symmetric) by choice of a cutoff parameter C3 and use of the filter

f() = , if lo03j""
(5.27)

= 0 , otherwise,

then finding the minimum norm least squares solution z n of the resulting

filtered version of Eq. (5.14). This scheme produces a search direction in

which F(G) should vary moderately rapidly because directions corresponding..*

to small eigenvalues, and thus slowly varying F(G), have been filtered out.

We denote such a filtered Newtonian algorithm by FN. The resulting direction

Zn  is not necessarily a descent direction (V F(G n) may have large negative

eigenvalues) so we shall also consider a variant of FN using the filter

f(G) =0 , if 0;E 3  (52)3(5.28) i

= 0 otherwise

The resulting algorithm is termed FNP.
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The problem of global ill conditioning, in particular the presence of -

multiple minima due to possible nonuniqueness of the phase retrieval problem,

cannot be addressed by similar modifications to these undertaken for local ill

conditioning simply because the algorithms are derived from local analysis.

5. 5 Block Fl(tVeing

Having shown the need for filtering, we now show that Eq. (5.14) can be

solved by a filtered solution of Eq. (5.26) in which each block is prefiltered

0 and a standard least squares algorithm then applied (avoiding the 
cost of a

singular value decomposition of the block matrix). We begin by noting that if

our algorithm is to be efficient then we must solve

2
P V2F(Gn)H -P VF(Gn) (5.29)c nc n

rather than Eq. (5.14), so that values only over the interval cI are used.

(For this reason, Eq. (5.29) rather than Eq. (5.14) is also used in FN and

FNP). We also note that the Hessians are not complex valued linear operators

since it will be obvious that for an arbitrary complex number a

jri(Gn ((XH) a ()e(Gn) H) "(5.30) i

1 n 1 n

Rather they are linear operators on the pair of real functions (Re H)(w) and

(IM H)M().

* The ability to do block prefiltering will depend upon the special form

of the Hessian in Eq. (5.26). For the operators X2 and J3 associated with
2 3

P and P it is obvious that Pci---JM. In addition, simple calculations
2 3 Ci

establish
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(Re H) (w) (Re H) (w~)
kG if (Re G)(w) > 0

0 otherwise (5.31)

and

2(Re H)(w sine0 -sin e cos e (Re H) (w

J "(G ) -l n(w)2
3n(Im H)(wM I(n( -sin ecos e Cos e (fln H)(w

(5.32)

where

6 arg G n M, wEd . (5.33)

The operators I -3 can be represented by 2 x 2 block diagonal operators;

at each point L the blocks are

0 0
(I -jr2(G if(w (R =

10 1 otherwise (5.34)

00 1

(5.35
I0

01

over w of the spectrum of each block. For I -3e this gives a spectrum
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consisting only of the points {O,l}, so I is its own square root.

Therefore the only prefiltering that needs to be done to (I-,Ye) 1 / 2 is to
2

eliminate all equations for (Re H)(w) that correspond to zeros in the block

spectra. For I -W, the spectrum will take on a range of values. Some of

these values may be small or negative if for some w the quantity

1/2(1-n(w)/IGn(w)1) is small or negative. Consequently (I-J3) either is

not well defined (i.e. has imaginary eigenvalues) or is ill conditioned, or is
1/2

both. To prefilter the block (I-J 3) we therefore choose a parameter

Ei> 0 and one of the following filters

f(c) = IoIl/2 sgn 0, if IO1 >E 3

= 0 , otherwise (5.36) j
1/2

f(a) al12 , if Y > 3
3

= 0 , otherwise (5.37)

The prefiltered block is then defined as

f (1 n~wsine cos f l - IGn(W) 0 sine -cos e(i1( / ))n -- =
(f -cos sineW

-Cos sin 0 1 cos e sine

(5.38)

It is reduced in size by eliminating those equations for sin e(Re H)(w) -

cos e(Im H) (w) that are associated with elements in the spectrum that are

filtered out.

From Eq. (4.39) J~l has the form
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de'(G )= I-~ P' +JAJ'g)P (5.39) L_

so that

(I-P )(G) Pe-PI - ,Y- A P (5.40)

wher e (I -Je (g )) is in block diagonal form over cI:
A n

sinc cos ~ g m(v) 1 0 sinc -cosc
[I-Y(g )]v M - (5.41)

A n-Cos~ sin 0 cosp sinP

with

E arg g (v), vEcI -,(5.42)

Unfortunately I - P does not possess an obvious symmetric square root.

However an asymmetric" root can be found by noting that

(I = I3 _ ip)H G GP l P G (5.43)

nn c 1 n

is the normal equation associated with the least square problem

min ) /=2p p(i_ P(g Hn-)P P P G 112 (5.44)
HIP (GnC c c c c n

so that we may take for the block (I - PA ) 12 the composite operator

(I -r1/(P A?) and prefilter each component. The filtered componentA c c

osis calculated in the same fashion as (I sine )/; the component
A f 3 f

p. 2 requires further manipulations before prefiltering. Let P havec9 c c c

an eigendecomposition U-U ,then as U is a unitary operator the solution

H to a prefiltered Eq. (5.26) is given by H =UL ,where L is the leastn n n n
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squares solution to

(i-Ye(g 1/2 Z P "P" G
A n f cO Ac cn

L =(5.45)(T ( ) )1/2.
(I -Xe(G ))~U P.G -Gin f i n n

where Z may be filtered using Eqs. (5.36) or (5.37).

The reason for choosing to solve for L instead of H lies in the
n n

choice of the pointwise discretization used in numerical calculations and in

the form of the IMSL subroutine LLSQF used to solve the discretized Eq. (5.45).

This subroutine uses an adaptive QR 'lgorithm, at each stage a column is

chosen from the block matrix and incorporated in the QR factorization

calculated at the previous stage. A running estimate is kept on the condition

number of R, if this estimate exceeds a use defined parameter, ATOL, then the

routine halts and computes a minimum norm least squares solution using the

most recent QR factorization and also sets components in L corresponding to

unused columns to zero. For a solution H this corresponds to setting point

values of H(w) to zero; for L it is setting components of L in an eigen-

function expansion to zero. Our analysis of ill conditioning indicates that

such components are likely to be zero anyway, so we believe Eq. (5.45) to be

the preferred form for solution.

We shall term the algorithm based on Eq. (5.45) with the filter given by

Eq. (5.24) the SQFN algorithm, and that based on Eq. (5.45) with the filter

given by Eq. (5.37) the SQFNP algorithm. SQFN incorporates more information

about the Hessian at each step, but SQFNP gives a guaranteed descent direction

H at each step.
n
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4

6. NUMERICAL RESULTS

We now present results for the solution of the discretized model

problems using the various algorithms so far proposed and show the discrete

approximate solutions G generated. The main measure of performance used in

this section will be the number of iterations n required by the algorithm

to reduce the function F(G-) to below a prescribed value. Since we are
n

interested more in the comparative than absolute behaviour of the algorithms

we take as the benchmark case the RP algorithm and consider the quantity

n/n where R is the number of iterations required by RP to reduce F(G.)

n
to below a prescribed value.

The ill conditioned nature of the problem means that this is not the

best of measures. Difficulties are encountered through behaviour such as the

erratic decrease of F(Gn); often a succession of iterates produce littlen

change in F(Gn ) and then a sudden decrease is recorded. In some algorithms
n

the iterates may converge to a particular value G whereas in others they

fail to converge so that F(Gn) and F(G) can be considerably different.
n

For these reasons the results reported here are intended as a guide to the

behaviour of algorithms on real problems rather than a prediction. However,
IA

poor though the measure is, there is none other available for use that does

not require prior knowledge of the solution.

6.1 Dicaetization, Test Function6 and AZgo'ittihm

The choice of discretization in these calculations was determined by

the condition that it give an accurate, efficient approximation to the

5

153



- -. - -2' . -- r rn- .-- in - . . i ,

finite Fourier transform and that the discretized projections be easily .

calculated. Therefore a discretization based on N point Gaussian

quadrature was chosen; the previous paper shows its accuracy and efficiency

and its pointwise nature allows easy evaluation of projections. The finite

dimensional problem now involves vectors g, GECN whose elements gk' Gk

are to be approximations to the function values g(pk ), G(p ) at the

abscissae pk of the N point Gaussian quadrature rule on cl. Vectors

m, n EJ
N  are formed with components mk = m(p k) , nk = n (pk) where m(v) and

n(w) are the known moduli. Matrices W, F EC~ are constructed with

being a diagonal matrix whose k-th entry is the weight wk of the quadrature
27TiPkP9

rule and with F having entries Fk This construction gives as

the discretized model problems

Find vectors 9 and G such that g =FWG and

I: Ig I M

II: Ig mk, G , 0

III: IgkI = mk ' JGJ = n.

where m and R are specified.

Since the metric for all analysis so far has been II II the numerical
2

calculations were done on a rescaled version of the equation g=FG,

..1/2. ^-1/2^^1/2 "1/22

(W--FW )(W G) (6.1)

With this rescaling the Euclidean norms of the vectors W G and W g

are now good approximations to the norms 11G112  and 11g1l2, and WI /2FWI/2

is a good approximation to P cP c in the operator norm induced by 11'112 .
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The two test functions chosen for the model problems were

3 c+P
G e G2) e (c+ 4 (6.2)

where P. (,) is the i-th monic'Legendre polynomial. The Fourier transform
1

g (v) of G (M is

g 1 (v) = 2 sin(2Tv-i)c (6.3)
(22v-i)

g2 (v) has no closed form and was calculated numerically. Both functions were

1 1
used. as test cases for model problem I, G and g as a test case for

problem II and G2 and g as a test case for problem III. The discrete -

approximations to G (w) and g (v) are denoted by G and g.

All numerical tests used the following basic algorithm

1: Choose an initial guess G 0

2: Given iterates g and G compute a search direction H
n n n

3: Calculate a step length X and new iterates
n

G ~ G gX =FWG
n+l n n n n+l n+l

4: Iterate steps 2 and 3 until the convergence criteria are satisfied.

The convergence criteria used in all calculations were

F(Gn < 10 or X , Hni k <2x10 3  (6.4)

n( = n-k n-kk=n

together with an upper limit N on the number of iterations. The sum ofmax

the last three steplengths, rather than 11X H 1J alone, was chosen as in ill " -
n n

conditioned minimization problems "stop-start" behaviour is often noticed. . .
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That is a large step often followed by one or two small steps after which

another large step is taken. This feature was often observed in the use of

any second order algorithm, differences in magnitude of successive step

lengths by factors greater than 100 occurred fairly frequently.

Three different forms of initial guess were used

1. Go= 0

2. G0 £ =(1-E )(l+E r)G

-3
3. G = i0 r10

Guess 2 is a damped perturbation of the true solution G with E1 repre-

senting the noise level. For convenience we shall express this level as a

percentage, e.g. El = .2 will be expressed as Ci =20% noise. The variable

r £ is a random complex variable with modulus uniformly distributed over

(0,11 and phase uniformly distributed over [0,21. Guess 3 represents a

small totally random perturbation about the origin, again for convenience such

guesses shall be denoted by el =100%.

6.2 Choice o6 Step LengthU X
n

The first results reported are those on determination of an optimal

choice of A. Three possibilities were considered
n

. A 2 = 1n

X22. = r where r is a random variable uniformly distributedn n n

over [0,2]
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3. A3 is the approximate minimum of F(G +A H ) as a function of >n n nfn--

determined by Powell's cubic line search algorithm [ 16 ] with the

following convergence criteria on the iterates 
X 3

k n

3 3) 3,
A - A ) FC +AH

k(n k-ln n k n n .

^ ~< .02(.5
F F(G)

n n
VF(G + k H ) F(G n kA Hn

n~~~ kn n.02 (6.5)

VF(G F(6 ) k 5

The performances of A i were compared by running each possibility on each
n

model problem with the appropriate test functions using the RP algorithm.

The parameters c = 2, N = 40 and N = 50 were chosen and each problem was
max

started with three different initial guesses with El=20%, 60% and 100%.

The results were remarkably uniform over all test cases of model problem,

1 2
test function and initial guess. Choices A and A performed almostn n

3.
identically with A just under a factor of 2 better. Almost always only onen

3
extra function evaluation was required for An, i.e. the convergence criteria

of Equation (6.5) were satisfied at k= 1. This extra computation almost

exactly balances the savings in the reduced number of iterations so that all

three choices incurred the same computational cost in reduction of F(G n) to

* 3
a specified value. However the greater flexibility of A led to its

n

adoption in all subsequent calculations.

The convexity of the set cI implies that F(Gn+ H ) <F(G ) for all
n n n

X E (0,2), the computations showed that this inequality still frequently held

0

157

0

• ~~~.................... ......... ,. .. . ..... 1:..... '-.::
-* -- *.". • *.. - -*. "- •. .~- **- . . ... * 

•
* .7- :1



for X E (2,3) but almost always failed beyond this. Almost all the values of

X3 lay in the interval [1,2.5] so in all subsequent line searches an initial
n

guess of 3 4 was used. As an experiment further runs were made with the
o0 n

fixed choice A =2 but these compared very poorly with 1 .

n n

6.3 lnitial Gueses and Ill Conditioning"

We now present some results on the ill conditioning of the model

problems. The first set are from efforts to estimate local ill conditioning

through the effects of small perturbations of the data m(v). They were

obtained from model problems 7-111 with the appropriate test functions, para-

meters c= 2, N= 40 and N =40 and using the RP algorithm. Random
max

relative errors of size E2 were induced in the vector m representing the

data, then the algorithm was started at the true solution G of the un-

perturbed problem. Table 1 gives some typical results for two perturbations

E2 =1% and e2 = 5%. The data appearing is the percentage relative error in

A i iX
G (100.1IG- ^ Il/G 1) and the value F(G) where G is the approximate

solution to the perturbed problem reached by the algorithm.

The data indicate that the problems are locally well conditioned in that

there exists a possible nearby solution to the perturbed problem to which the

iterates tended and whose distance from the solution of the unperturbed

problem is of the same order as the perturbation. We cannot assert that the

solution does exist for in almost all cases the algorithm terminated with

F(G) < 10-  or n>N Termination due to convergence of successive
n max
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iterates did not occur although they always appeared to be circling about some

common point. This problem was encountered throughout these test computations,

however we delay further discussion until the presentation of results on

filtering. p

The second set of results indicates the global ill conditioning of the

problem, particularly with respect to the natural measure F(G). Figures 4-6

represent three functions G found as solutions to model problem I with test

x2X-5 -5 -
function G with values F(G) of 8 x 10 7 x 10 and 8 x 10

respectively. Figures 7-9 show the G's obtained by repeating the runs for

model problem III holding all other factors (algorithm, initial guess, etc.)

-2 -2 -2
constant. The values F(G) were 2 x 10 , 3 x 10 and 7 x 10 , respectively.

Although all functions G resemble G to some degree the wide variance

among them suggests that the surface T-{(F(G),G):GEcI} is very rugged.

Furthermore although the functions in Figures 7-9 appear graphically to be

closer to G than those in Figures 4-6 the function F(G) holds them to be

substantially further away. -

In general the solutions G to model problems II and III were, as

suggested by these graphs, definitely more acceptable as solutions to the

phase retrieval problem than solutions to model problem I; nevertheless the

3values F(G) for II and III were almost always a factor of 10 to 10 greater

than those of I. A tentative ranking of the problems in order of decreasing

ill conditioning would be I (w ^1) I (with 2(wi G ) >III. As expected

more information gives better solutions, however we were not sure to what

degree the particular choice of G with its large discontinuity at w= c

159



influenced this ordering.

We conclude this subsection with a brief mention of an anomaly that lead

to use of initial guess 3 rather than guess 1. As noted in a previous paper

(19] it is possible to show that if iterates possess certain symmetries then

" almost all the algorithms preserve these symmetries. In particular with the

highly symmetric choice of Go =0 some form of symmetry was always preserved

yet the algorithm often converged to reasonable pseudo-solutions. One such

example for model problem I with N= 40 and c= 2 is shown in Figure 10,

it displays a symmetric solution G for which F(G) <5 x 10 . Therefore, if

no a priori knowledge is available for G, a small random perturbation is a

better initial guess than zero.

6.4 FitLtered PR and PA Algorithms

Having determined the problem to be globally ill conditioned we sought to

produce a better conditioned global problem by filtering out the local ill

conditioning of the finite Fourier transform discussed previously. This was

done by projecting the search directions H (and therefore the iterates G )n n

on to the span of the first P eigenfunctions of P crP whose associated
c c

4 eigenvalues had magnitude greater than a prescribed cutoff E As a test

this filter was applied to iterates in the RP alaorithm producing the filtered

restricted projection algorithm (FRP) and the algorithms compared on all model

problems with parameters c =2, N= 40 and N 40. Two choices of cutoff
max

E3= .9 and c .25 were considered,these values gave projections on to

subspaces of dimensions 15 and 18, respectively.
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As measured by F(G) FRP performed very poorly compared to RP for

E =.9. At best 1.5 times as many iterations were needed to reduce F(Gn) to
3 n

comparable values; very often FRP failed in that it ran the full N jix
iterations reaching a point G such that F(G) > 100F(7), where G was the

final iterate of RP under the same conditions. FRP substantially improved

with = .25, now averaging 1.5 times as many iterations, but still occasionally 2
failing in the manner described above. However, if measured by the distance

between final iterates the algorithms appeared to be more equal, 118- G11 was

usually less than .25 for all algorithms.

The disappointing result was that FRP did not display improved conver-

gence properties over RP with regard to the size of L 2 i N. Iterates
k '0 n-k n-k

still appeared to wander through the subspace without much effect on F(G ).
n

It seems that a fifteen dimensional subspace is still toc larqe and quite

severe restrictions (P -5) must be used to ensure conver,4ence to a minimum.

These results were borne out by the results and -,mz arisr. of the PA and

RP algorithms over all model problems for arameter tairs ,N. of (2,40),

(2,32) and (1.5,22) and Nmax 40. A variety of filter% were used but even

for the best, using the cutoff of Equation (6.6), the results nad a larqe

variance and averaqed out so that PA still required about the same number of

iterations to achieve the same improvement in F(G ). Aqain termination was

due to reduction of F(G) or nmN and not to converqence of successive
max

iterates. One reason for this is that for the parameter values c under

consideration almost all significantly nonzero eigenvalues of P JTP have
c c

-1magnitude '-1 so that the filtered inverse (P Pc ) and the Hermitian
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square P - 9 agree on most functions, therefore the search directions

produced by the algorithms are usually quite close. It was noticed that the

relative performance of PA did appear to improve with decreasing c,

averaging about .9 for c=1.5.

6.5 Retative Performance oA Second Okder Alqorithm"

We now present results on the relative performance of algorithms FN,

FNP, SQFN and SQFNP compared to RP. They are not comprehensive; considera-

tions such as the number of parameters at the users disposal, failure of the

IMSL subroutines on certain equations and computational cost prevented this.

The algorithms were run on each model problem with the parameter pairs (c,N)

being (2,40), (2,32) and (1.5,22), N ranging from 15 (for computa-- ' ' max"

tionally costly algorithms) to 50 and with perturbations in.the initial guess

of E =20, 60 and 100. The cutoff parameters E in Equations (5.26),
1 3

(5.27), (5.34) and (5.35) used at the n-th iteration, were calculated from

quantity

P max{min{4.21Ln H 11- .024, .21, .002} . (6.6)
n-1 n-1

_ For FN and FNP C3 = p, for SQFN and SQFNP E3 p/3. The IMSL subroutine

2
. EIGRS was used to calculate the eigendecomposition of V F(G ) , the subroutine

n

LLSQF to calculate the minimum norm least squares solution of Equation (5.42),

*with the upper bound ATOL on the condition number of R in the QR factoriza-

tion specified to be E3/10.
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The results in Tables 2-5 aive first the averaae oerformance of RP on

XU
each problem in terms of the final value F(G) and the number of iterates n

needed to reach this. The remaining entries are the ratios ni/n where n is

the average number of iterations needed by the alternative algorithm to reduce

F(G) to below F(G). In some cases the algorithm on trial failed to reduce

F(G) to below 10OF(G), such cases are marked by a *. In other cases the
n

alternative algorithm converged but with F(G.) larger than F(Gs) in which

case the n of the ratio was altered to the number of iterations required by

RP to reduce F(G~) to below F(G.).

n n

The remaining tables show the effect of (and thus the need for) filtering.

Table 6 contains pairs giving the range of the number of eigenvalues preserved

at each iteration by the filter in FN and FNP. The final table for SQFN

and SQFNP shows two pairs, the upper giving the range of the number of rows

in the filtered block equation (5.40), the lower pair indicates the range of

the number of columns used by LLSQF. Typically the larger figures in the

range occur as F(Gn ) decreases and G converges, however the "stop-start"n n

behaviour of the iterates often caused these measures of filtering to also

jump about.

Finally we present graphs (Figures 11-22) of final iterates for RP with

parameters c=2 and N=40 for each model problem and E1 =20%, 60% and

100%. As noted previously final iterates varied much less than final values

of F(G ) and the graphs are typical of all final iterates for these problems. S
n

Some points worth noting on observed algorithm behaviour are given. RP

.4 hardly ever halted due to convergence of the sequence G ,iterates exhibited
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4q

steady "zig-zagging" with accompanying small but steady decreases in

F(G ) after an initial burst of reduction in the first 10 or so iterates.
n

The higher order algorithms did give convergent iterates on a number of

occasions but some limit points were not true minima since at G VF(G ) #0
n n

but VF(G) lay in the null space of the filtered Hessian.
n

The cutoff parameter given by Equation (6.6) was derived after some ..-

trials and errors and is certainly problem specific. However it performed

satisfactorily for FN, FNP, SQFN and SQFNP in that it generated X that
n

almost always lay in the interval [.1,1.5], and for FN and FNP started close

to the true solution the expected value of X -1 was always observed. I

Moreover it was noted that RP gave the best initial decreases in F(G )when
n

started with c_= 100%, so in all algorithms the final search direction H
n

was taken to be a weighted linear combination of the H determined by the
n

particular algorithm and the H of RP, i.e.
n

____ "21°
H.= +H .2 (6.7)
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7. CONCLUSIONS

The ill posed nature of phase retrieval induces enough variance in the

data to prevent the drawing of quantitative conclusions, however qualitative

results are apparent. As expected FN and FNP show the best performance when .

iterates are close to the true solution 61, with FNP displaying greater

robustness in regions further away. Close to the solution SQFN and SQFNP

do not improve upon RP, but they give the best results when started from a

random initial guess. Since SQFN, SQFNP, FN and FNP are all filtered variants

of the same basic algorithm it should be possible by a judicious choice of

filters to combine the best features of all in one algorithm; to do so

requires further study of the block filterings of subsection 5.5.

As measured in terms of the computational cost to reduce F(G ) to a
n

certain value RP appears to be the certain winner and it is difficult to see

how any other algorithm can be improved enough to compete with it. Of the

second order algorithms SQFNP seems to be the most efficient, requiring a

matrix with .8 the number of rows as SQFN to give approximately the same

results. Furthermore the cost can probably be substantially reduced by

taking advantage of the sparsity and special structure of the blocks in

Equation (5.42).

Tables 6 and 7 confirm that the essential dimension of model problem I is

twice the number P of significantly nonzero eigenvalues of P c.P. Thec c
essential dimension of II and III is harder to estimate although a reasonable .

upper bound would be 2P + N. Certainly for N= 22 and 32 the problems
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appear to be almost well posed. The tables also indicate that II may be more

(locally) ill conditioned than III although this may be attributable to the

form of the test functions.

The oscillatory nature of the graphed solutions suggests that further .

filtering is necessary and that local filtering to the degree done here is

insufficient to give a well posed problem. Three options for further

conditioning are:

1. Use of a more restrictive local filter

2. Regularization of F(G) by addition of a penalty function e.g.,

F (G) - F(G) + CIIdG (7.1)
R NJwi

3. Use of the algorithm above followed by smoothing of the numerical

solutions G*.

Each option has its attractions: with use of 1 the iterates would be

restricted to the span of the first 5 to 10 singular functions, these are

known to be smooth and slowly varying so a linear combination would also be

reasonably well behaved. Note that this also appears if the interval size

c is reduced to around .75 or smaller, thus having less information may

4 actually give a better solution. For 2 a suitably chosen penalty function

can easily be accommodated within the theory of algorithms based on projections

developed here. Finally visual inspection of the graphs shown indicates that

the functions G* are often very perturbed but are basically similar to the

true solution G so that option 3 will often give an acceptable final

solution.
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APPENDIX A. ON THE EXISTENCE OF MULTIPLE SOLUTIONS TO THE 2-D PHASE

RECOVERY PROBLEM

The two-dimensional phase retrieval problem can be stated as:

Let A arld B be bounded subsets of IR2 . Given the

information that g(z ,z )is the Fourier transform of a function
1 2

G(w , ) with support contained in B and the values m(x ,x =

Ig(xl,x 2) on A, find the phase of g on A and reconstruct G.

The phase retrieval problem does not necessarily have a unique solution.

The aim of this appendix is to derive from a given solution pair g and G

neces6 ary conditions for the existence (and characterization) of alternative

solution pairs h and H. An intuitive start for such an investigation is %

the simple result that if f(z) is an analytic function of the complex

variable z then so is f*(z*) and f(z) and f*(z*) have the same modulus

for real z. This suggests that if a solution g can be factored into a

product of analytic functions g and g2  then the entire function of two 1 2
complex variables h(zl,Z2 ) -g(Zl,Z2)g*(z*,z*) is also a possible solution.

The main result of this appendix is to show that all possible alternative

solutions must be of this simple form.
SI

A. 1 One-Dimen,6ional Re U,

The following results from the theory of functions of a single complex

variable are required. } _

Theo4em A. 1: PaZey-WieneA Theomem (20]. Let B- bl 1 b2 ] be a bounded inter-
22

val in 3R. Then for any G E L ), G 0 on B, the transform
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2 izu
g(z, J e G(u) du (A. 1)

'bl

is an.entire func-.ion and there exist constants a and such that

-b I Im z
Ct.: e if Im z > 0

Ig(z)I < b m z A"._

e if Im Z<0

The next result is the fundamental theorem providing the necessary

machinery to characterize all possible solutions to the phase problem both in

one and two dimensions. Although independently derived by many authors £3,211,

it appears to have been first stated by Akutowicz £8.9]. We state the

result as originally presented there.

2
Theo, em A.f. Let V' be the class of all functions g EL 2R) satisfying

1. Ig(x) I =M(x) 0 VxER

2. g = rG where support of G is contained in a bounded interval

. B of JR.

Then any two functions g, hE are related by equations of the form

h(z) = i B(z)g(z)

, (A.3)

B(z) = (

where the z2 form some subset of the zeros of g(z). The function

(z-z)/(z-z) is termed a Blaschke factor.
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Lemma A.1: A necessary and sufficient condition for the infinite product

B(z) to converge is that [9]

JIM  ZZID
=i +1z,1 2 cj .(A.4)

A sufficient condition for the convergence of the infinite sum is that G(u)

have only a finite number of jump discontinuities over B. 1

It is easily shown that if G has support in an interval B and if

h(z) =B(z)g(z), then H(u) = (- 1 h)(u) also has support in B. Therefore

combining theorems A.l, A.2 and lemma A.1 gives the following statement on .

existence of multiple solutions to the 1-D phase retrieval problem.

Theo)Lem A.3: Let A and B be bounded intervals in JR with a modulus

m(x) specified over A and a solution pair g and G be given to the

corresponding 1-D phase problem. Then if m(x) has an extension to the

entire real line such that m(x) >0 and G(u) has only finite jump dis-

continuities over B as well as being nonzero in neighborhoods of the end-

points of B, then all other solution pairs h,H are given by

h(z) = eiaB(z)g(z) (A.5) p

H(u) = (Jr h)(u) (A.6) "

where B(z) is any finite or infinite product of Blaschke factors and OLER.

* 0
The conditions of Theorem A.3 imply that a solution g(z) has a . -

Hadamard factorization

1-9
- - - - - -. .. . *..i
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g (z) g g(0)e 1 ) (A..7)

where ct,ER, which may be rewritten as

g (z) Ig(o) "ei(a+z) (

z z

g1 (z)g 2 (z) (A.8) 1
where A is a subset of the natural numbers N. Theorem A.3 thus states that

any solution h(z) has the form

iY *h(z) = e g(z)g2 (z*), yER (A.9)

i.e. that all possible solutions are in one to one correspondence with all

possible factorizations of g(z).

A.2 ExIten6non to Two Viemmon6

Conditions that multiple solutions to the 2-D phase retrieval problem

must satisfy can be deduced from the 1-D results. To begin, suppose that

the problem as stated has a solution pair g(zlz 2) , G(W1 ,w2 ) where

z= x+ iy and w= u+ iv denote variables in the transform and physical

domains, such that G(ul,U2) has only a finite number of jump discontinuities

over B. Then

Lemma A.2: g(zlz 2) is an entire function of the complex variables ZlZ 2

of exponential growth.
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Pr00f. After defining the quantities L

+ +U1  mnax{u1:u 1(ul,2) E B}, u2(1 max{u 2 (uI 1'2 B}
= EB, u2 (u I ) = m : ,u 2 )

uI = min{ul: (UlU 2 ) E B}, u2 u) =min{u (u ,U E B}
1 A 1 (u1 u2 2 1 2 1 2

g(zlfz )  can be expressed as
+ +

u u 2 (u)

g(zl,z 2 ) = du e du 2 e G(UlU 2  (A.10) a
u1  uG2 (U1

Writing g(zl,z 2) as gz2 (z1) to indicate that "g(z11 z2) is to be considered

as a function of z only with z fixed gives
+

Ui iZlUl1 21

g2 1 G (UlZ2)e du (A.11)

U1  I S

Therefore by Theorem A.1 gz (z ) is an entire function of z of exponential
1

growth. A similar procedure shows that gz (z2) is an entire function of z2.
* 1

An immediate consequence of this lemma is that if a solution exists then

2the modulus m(xl~x2 ) has an analytic extension to all of 3R , which, under

the assumption that m(xl,x2 ) >0 V(xlx2), is unique.
0

Now let h(Zl, 2) , H(wIw 2) be any other solution pair to this problem;

then h (x ) and g (xI) must have the same modulus m (xl) over the.x 2  x 1 x 2x 1

set B i={xI :(x,X 2 )E B}; i.e. h (zl) and g (zI) are both solutions
2 2

to F- I-D phase retrieval problem. Therefore by Theorem A.2, Lemma A.1 and

the above assumptions on g, G and m we have that
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hi(x 2 ) i(x 2 )ZB (z)g (Z (A. -

2 2 2

where c(x 2 ) and a(x 2) are constants dependent on x2  only and B(z) is

an infinite product of Blashke factors formed from the zeros p (x of

S(z). Thus if n (x2) are the zeros of hx (zI) and the sets X Y

are defined by

X U {p (x2 ) , x2 J ,  Y - U {T1(x 2 ) ,x 2  (A.13)
x2 l 2 2~ x 2 =l 9

it follows that

Y CX U X* *X CY UY (A.14):
x2  2  2  2  2  2.

Let X and Y be the sets of zeros of g and h respectively. It is

known (221 that the zeros of a function of n complex variables form an

analytic set of dimension (n-1) which in turn is the union of analytic mani-i-A

folds of dimension (n-1) and a set of singular points of dimension at most

(n-2). Therefore for almost all x 2  the points (P k(x 2),x 2) and ( r\k(x 2 ),x2

are members of analytic submanifolds of X and Y respectively; that is for

each k there exist maps

4) -- X k(x2 (X)=

(A.15)
*k :  CY Pk(x2) = (k(X 2 )'x2)

such that for almost all x 2' k and k are analytic in a neighborhood

N (x of x Furthermore for almost all x2, the mapsk 2 2*2
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{kkk~ I are analytic in neighborhoods Nk(x2) of x2  (note the _ _*k'k k~lk22

dependence of N (x 2 ) on k).
k 2

We now suppose that the zeros (x2) are well separated, i.e.
k2

Pk(X 2 ) p(x 2 ) or P(x 2  Vk, k3OZ (A.16)

Since by (A.12) yk(x2) Pk(x2) or pk(x2) the analyticity of and 'k
k

imply that

y = pk(z) or p*(z*) VzENk(X 2 ) (A.17)

Therefore if X CX and Y CY are the analytic extensions of the neighbor-
1- 1

hoods of X and Y to analytic manifolds then I .

2 2

1, Y- 1 1J 1 C 1 1 (A.18)

if Y1 X then there exists a point yE Y1  and an associated neighborhood S

N(y) CY such that N(y) CX 1 - X. By analytic continuation N(y) can be

extended to an analytic manifold Y such that Y CX and Y CY. If
22 2 1 2-1

Y = Y then Y = X otherwise Y must be decomposable into two analytic
131 1

submanifolds Y and Y such that Y2 X* and Y C"X or X
23 2 1 3 1 1*

Thus, apart from alternative solutions generated by varying a(x2) and

(x2 ), a necessary condition that an alternative solution h to the 2-D

phase problem must satisfy is that some of its zeros be the complex conjugates

of those of the original solution. Although this is the same mechanism by -1

which an infinite number of alternative solutions to the 1-D phase problem

are generated, the zeros must now satisfy the condition that they form a

union of one-dimensional analytic manifolds as opposed to a union of zero
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dimensional manifolds, that is a collection of connected analytic line seg-

ments as opposed to a collection of isolated points. If an alternative solu-

tion exists then either the whole manifold X has been "flipped" to its

conjugate, or it has been "torn" and only partially flipped. The connected

nature of X implies that the existence of "dotted lines" along which tears - I

may be made is very unlikely; this compares to the isolated points in the 1-D :

problem, each of which may be flipped independently of the other.

Given this condition the form of an alternative solution may be determined.

Let X be decomposable into submanifolds X2, X3 and define

X. -Xn {(zx):x fixed, zlEC} (A.19)I,x2 1 12 2

then the function g (z) may be written as the product
X2 1

g(z l = gl,x (Zl)g 2 , x (zl) (A.20) S

where

9 (1 (z 1{x) ( (A..21)
2 (Pk (x2) x2 )EX2,x k 2/

By (A.12) hx (z ) may be written as
1

h (zl) = g (z 1 ) x (zr) g (A.22)
22 '2

If h(z,Z) exists it is the analytic extension of h (zl), therefore

h(z 1 z )= =g (z1 z g (z*3 z*).
hz'2 gll'2' 2z'z 1 2

We have not been able to show that this necessary condition for alter-

native solutions is also sufficient; i.e. given submanifolds X2, X3  and

174.
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the decomposition of Eq. (A.20) that the h (Zl) of Eq. (A.22) may be ana-
21

lytically continued to a function h(zl,Z 2 ). One source of trouble is the

dependence of Nk(X2 ) on k; it is possible that for every x2  kN =.

k 2 2 k=l Nkx 2)

Then although each zero (pk(X2)x 2) is analytic in a neighborhood of x2

there does not exist a neighborhood over which all zeros are uniformly ana-

lytic, and therefore a neighborhood over which the product of Eq. (A.21) is

provably analytic.

If the cardinalities of X. are finite, e.g. g(z1,z2) is a poly-1,x

nomial,.then sufficiency can be shown. In the polynomial case decomposability

of X1  into X2 and X3 is equivalent to a factorization of the polynomial. p

However almost all polynomials of two variables, are irreducible so that such

a factorization and decomposition does not exist, therefore alternative

solutions do not exist. Irreducibility extends to general functions of two

variables with infinite sets of zeros, so that exact alternative solutions are

most unlikely in 2-D phase retrieval. This result on polynomials and its

implications is also presented in (23]. p

A.3 The Suppot o6 AtteAnat.ve Sotut.on"

In the previous subsection conditions that alternative solutions g and

h must satisfy in order that Ig(xl,x 2) I = lh(xlx 2 )I were derived. It re-

mains to derive necessary conditions on g and h so that (support G)

= (support H). The first is that 8(x2) =0 in Eq. (A.12). This follows by

noting that if G(ulU 2) is nonzero in neighborhoods of points (uiu

(UlU) E B then the function G(u ,X2) of Eq. (A.ll) will be nonzero in
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neighborhoods of u1 = u and u1 = u for almost all x So by Theorem A.3 -

h (z is the transform of a function H(ul,X2 ) with support in (u1 ,u;)x 2121
22

A second condition follows from noting that the boundedness of the set . -

B implies that h(zl,Z2) is of exponential growth in z so that a(x2)

must only be a linear function of x2. Summarizing these results and those

of the previous section gives the next theorem.

Theaotem A.4: Let g, G be a solution pair to the 2-D phase retrieval problem.

Then any other solution pair h, H must have the form

i (C1+U2z2) ,
h(zlZ 2 ) = e - g1(zl1 z2 )g2 (zl#z2 ) (A.23)

where glg2  is a factorization of g.

We have been unable to complement these necessary conditions for equality

of support with sufficient conditions equivalent to those for the 1-D problem.

The difficulty seems to lie in determining the role of the geometry of B; we

give two examples

1. The first example concerns convexity and is taken from Huiser and

Torn (24]. Let g, G be a solution pair, then after the change of variables

to the new orthogonal coordinate systems (slp2), (ti t2) with

sI = u cos +u sin tI =x cos x sin

1 2 1 42 ••

s2 =-u sin + u2 cos4' t2 =-x 1 sin +x 2 cos (A.24)

and definition of the quantities

6J
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s2(S) = max{s 2 :(SlS2) E(B} 

s 2 (s l ) = min{s 2 : (sis 2 ) E B}

S) max{sl :(SlS 2 1 }(A.25)

Sl(1)W= min{s 1 : (sis 2 ) E B}

the relationship g= 9G may be rewritten as i

+(1 W isl1t s s1is 2t 2

g(tl,t 2) =f ds1 e 1 ds 2 e G(Sls 2 ) .(A.26)
sl( W s 2 (sl 1

For fixed t2  the growth rate in g (tl) is determined by s(l and

s( Knowing these values for all P is equivalent to knowing all "

supporting hyperplanes for the set B, which by duality arguments from linear P -

algebra is equivalent to knowing the convex hull of B. If h and H is

any other solution pair then h (t1) must have the same growth as g (t
t 1 t2  1

otherwise H has support outside of the convex hull of B. .

If g has a factorization glg2  such that the growth of g2  is always

dominated by that of g1  (e.g. g2  is a polynomial) then the alternative

function
* * * J

h(zl,Z2 ) gl(zlz 2 )g 2 (zl'z2 ) (A.27)

has the same modulus as g and support in the convex hull of B. If B is

convex then h is an alternative solution, if B is not convex then it is

possible that the support of H is not B even though still in the convex

hull.
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2. Let g, G be a solution pair, then it is trivial to show that the o

* * ....*

inverse transform of g*(zl,z2) is G (-w i,- ) which has support -B. So12 1 w2)wihhsspot-.S

a sufficient condition that g (z1 ,z2) be an alternative solution is that

B=-B, i.e. B is invariant under rotation by 1800.

Example 1 suggests that convexity of B is necessary for existence of an

alternative solution and taken with example 2 suggests that for a factoriza-

tion g into glg 2 and an alternative solution h of Eq. (A.27) then B .

must have symmetries linked in some fashion to those directions in which

growth of g2 dominates gl"

A.4 Conctu4ionz

Nonuniqueness in the phase retrieval problem in two dimensions appears to

depend on two conditions: (1) that the zero space of g be decomposable into

a union of several submanifolds, (2) that B possesses a suitable combination

of convexity and symmetry. Both conditions will, in general, be difficult to

satisfy compared to the I-D phase retrieval problem. Only in the case of

symmetries that effectively reduce g(zlz 2) to a function of one variable

(e.g., the possession of radial symmetry investigated in [25]) will the mani-

fold have an infinite decomposition as appears in the I-D problem. In most

cases it will be indivisible. Likewise the general two-dimensional bounded

set has considerably more degrees of freedom than the one-dimensional bounded -. -

set, the interval, consequently it has far fewer symmetries. Therefore in
0

general the 2-D phase retrieval problem will have a unique solution if one

exists.
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Table 1. Sensitivity of solution G to a relative perturbation of C in

the data.

E 1% =5%

2 2

Model Test Percentage, Percentage_
xF(G) -' F(G)Problem Function error in G error in G

"11% 1 X10-5  9% 6 X10-4

IG2% 9 X106  10% 3 x105

-Ii al .75% 8 x10-4  4% 4 x10-2

a 2 1.5% 2 x10-4  13% 3 x10-3
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Table 2. Relative performance of algorithms on model problem I with test

function G

N RP FN FNP SQFN SQFNP

1 2 8___ x____________ 10 -6 .325.325 .6 1.

-6
20 2 98X10 64 .275 .275 1.67 1.8

-6

40 5 x106  5 .80 .80 2.0 2.0

-6
22 9 X10 34 .20 .10 .275 .40

0 -5
60 32 lX 10 7 .575 .575 2.0 1.4

-6
40 9 X10 10 .40 .40 1.5 1.5

-4
22 5xl10 50 *.65 .45 .50

100 32 7 x10 -4 30 .65 .45 .40 .40
-3

40 1.4 x10 40 *.20 .30 .30
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Table 3. Relative performance of algorithms on model problem I with test
2

function G

E NFN FNP SQFN SQFNP

-5
22 1.9 X10 50 1.5 1.0 .40 .300

-5
60 32 1. 5xl10 20 *.825 .875 .45

40 3 x10- 40 *1.0 .35 .30

-5
22 5 x10 50 1.5 .30 .60 .30

100 32 4 x 1 - 20 1.6 .45 .35 .40

40 8 X10- 40 .50 .50 .425 .30

18



Table 4. Relative performance of algorithms on model problem II.

" N FN FNP I SQFN SQFNP

-6

20 40 9 ×10 -  9 .50 .50 1. 0 [ -

60 40 9 x 10 - 6  11 .50 .50

-3
100 40 1 × i0 40 .25 .20

4

q

II
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Table 5. Relative performance of algorithms on model problem III.

E N FN FNP SQFN SQFNP .

-6
20 22 9 X10 23 .20 .20 .50 .50

60 22 5 x 10- 4  50 .50 .30 .35 .45

-432 3 10 20 2.0 .45 .50 .60

100 22 2 x10- 3  50 3.0 .80 .325 .325 "

-2
32 6 x 10 20 1.0 .50 .40
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Table 6. The range of nonze'ro eigenvalues in algorithms FN and FNP. Note

that for c= 1.5, 2 the finite Fourier transform has at most 15

and 22 eigenvalues respectively with magnitudes greater than .002.

N 22 22 22 32 32 40 40

E 20 60 100 60 100 60 100 -

G FN 18-19 18-25 14-28 30 24-39 30-34 25-37

G1  FNP 16-18 17-18 14-21 28 23-28 30-33 23-37

Model Problem I

2
G FN 18 16-27 16-28 26-43 27-40 28-39 28-35
2G FNP 17 14-24 16-23 24-29 25-30 24-26 28-29

Model Problem II

FN ..... 55-57 54-60

FNP 30-31 30-33 - - - 55-57 55-62

Model Problem III

FN 33-44 33-44 33-44 47-64 57-63 - -

FNP 31-37 31-42 31-42 46-61 52-58 55-75 -

6
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- Table 7. The range of matrix dimensions and effective dimensions of the

block matrices in algorithms SQFN and SQFNP. The rows marked A

contain the range of block matrix row sizes; the rows marked B

contain the range of the number of columns used by the routine

LLSQF.
- o .

N 22 22 22 32 32 40 40

20 60 100 60 100 60 100

G SQFN A 40-44 30-44 32-44 36-64 44-64 49-80 54-80
B 12-23 12-17 9-22 9-25 12-26 12-29 13-29

1-, -

G SQFNP A 23-32 28-36 27-37 36-50 38-51 46-61 47-62
B 10-18 11-17 9-24 14-20 13-28 12-26 15-32

*MODEL PROBLEM I
G SQFN A 28-44 36-44 32-44 46-64 53-63 72-80 75-80I )

B 10-22 13-21 10-23 8-27 12-25 16-33 23-33

G2  SQFNP A 26-29 30-35 29-36 45-53 41-51 54-60 58-65

B 14-19 10-16 10-20 18-24 11-28 11-27 20-30

MODEL PROBLEM II

SQFN A 87-88 79-88 72-88 91-128 120-126 - -

B 36-44 25-44 18-44 31-64 33-43 -

SQFNP A 53-65 58-77 61-73 85-104 102-107 -",

B 23-37 17-44 18-44 31-64 30-41 - "
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FIGURE LEGENDS

Fig. 1. Two examples of poor convergence of the alternating projection. J
algorithm induced by ill conditioning.

Fig. 2. The tangent plane Ti (x) to a set Bi  at the point P. (x). T. (x)
1 1

locally separates B. and S. (x).1 1

Fig. 3. An example of the form of the Hessian operator Ji (x) associated
1

with a sphere B.

Fig. 4. A solution to model problem I, test function G with F(G) =8-10

A reconstructed modulus, 0 reconstructed phase, exact modulus,

exact phase.

Fig. 5. A solution to model problem I, test function G with F(G) =7-10 -

A reconstructed modulus, 0 reconstructed phase, exact modulus,

exact phase.
-2 it = 40

Fig. 6. A solution to model problem I, test function 2 with F(G) =8-10

A reconstructed modulus, 0 reconstructed phase, .... exact modulus,

exact phase.

Fig. 7. A solution to model problem III, test function G with F(G) 2-102:

reconstructed modulus, 0 reconstructed phase, .... exact modulus,

exact phase.

Fig. 8. A solution to model problem III, test function G2 with F() 3 -2

A reconstructed modulus, 0 reconstructed phase, exact modulus,

exact phase.

t
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Fig. 9. A solution to model problem III, test function G with

-2
F(G) = 7.10 A reconstructed modulus, 0 reconstructed phase,

---- exact modulus, - exact phase.

Fig. 10. An example of preservation of symmetry, a solution to model problem

I, test function G with Go=0.

Fig. 11. Sample realization solution to model problem I, test function GI " -.

e =20%: A reconstructed real component, 0 reconstructed imaginary

component, -exact real component, ---- exact imaginary component.

Fig. 12. Sample realization solution to model problem I, test function G

E =60%: A reconstructed real component, 0 reconstructed imaginary

component, -exact real component, ---- exact imaginary component.

Fig. 13. Sample realization solution to model problem I, test function Gi,

= 100%: A reconstructed real component, 0 reconstructed imaginary

component, - exact real component, ---- exact imaginary component.

Fig. 14. Sample realization solution to model problem III, test function Gl

E= 20%: A reconstructed real component, 0 reconstructed imaginary

component, - exact real component, ---- exact imaginary component.

Fig. 15. Sample realization solution to model problem III, test function G

E -60%: A reconstructed real component, 0 reconstructed imaginary

component, - exact real component, ---- exact imaginary component.
Fig. 16. Sample realization solution to model problem III, test function G"1

r =100%: A reconstructed real component, 0 reconstructed imaginary

component, - exact real component, .... exact imaginary component.

. 4-° ,-
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2 .

Fig. 17. Sample realization solution to model problem I, test function 2

E =20%: 0 reconstructed phase, A reconstructed modulus,

exact modulus, - exact phase.

Fig. 18. Sample realization solution to model problem I, test function G-

E=60%: 0 reconstructed phase, A reconstructed modulus,

exact modulus, - exact phase.

Fig. 19. Sample realization solution to model problem I, test function G 2

E= 100%: 0 reconstructed phase, A reconstructed modulus,

exact modulus, -exact phase.

Fig. 20. Sample realization solution to model problem III, test function G

E =20%: 0 reconstructed phase, A reconstructed modulus,

exact modulus, - exact phase.

Fig. 21. Sample realization solution to model problem III, test function G,

e =60%: 0 reconstructed phase, A reconstructed modulus,

exact modulus, - exact phase.

Fig. 22. Sample realization solution to model problem III, test function G2,

E=l100%: 0 reconstructed phase, A reconstructed modulus,

exact modulus, -exact phase.
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rig. 1. Two examples of poor convergence of the alternating proj ection * -

algorithm induced by ill conditioning. i,
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Fig. 2. The tangent plane T i~ to a set 3. at the point P Wx. T(x)

locally separates B. and S.()
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Fig. 3. An example of the form of the Hessian~ operator Jr (x associated

with a sphere B j.
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.241
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Fig. 5. A solution to model problem I, test function G with P(G)= 7-10

Sreconstructed modulus, 0 reconstructed phase, exact modulus,

-exact phase.
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Fig. 6. A solution to model problem I, test function G2 with F(G) = 8"10-4 n

Areconstructed modulus, 0 reconstructed phase, exact modulus, •'"

-- exact phase. 
..

197



12

0 00

.241 .1 0
0 0 0

Fig. 7. A souto to 0oe p0be Its ucinG wt ()=.0

0~ 0eosrce0ouu,0rcnsrce hs, eatmdls

00 exc phase.

.2198

.2 .1 2

Fig. 7 .A souint oe*rbe II etfnto i FG -2-10



05 -
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'X 2 X-2
Fig. 8. A solution to model problem III, test function G with F(G) -3-10

Sreconstructed modulus, 0 reconstructed phase, exact modulus,

exact phase.
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Fig. 12. Sample realization solution to model problem I, test function G

C -0%:A reconstructed real component, 0 reconstructed imaginary

component, -exact real component, exact imaginary component.
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Fig. 13. Sample realization solution to model problem It test function G

E - 1004: A reconstructed real component, 0 reconstructed imaginary

component, -exact real component, --- exact imaginary component. 2:
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*Fig. 19. Sample realization solution to model problem 1, test function G

c -100%: 0 reconstructed phase, L reconstructed modulus,

F--- exact modulus, -exact phase.
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Fig. 21. Sample realization solution to model problem III, test function G
* £m60%: 0 reconstructed phase, Areconstructed modulus,

---exact modulus, exact phase.
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*Fig. 22. Sample realization solution to model problem Ili, test function 2A

Em 100%: 0 reconstructed phase, Ai reconstructed modulus,

--- exact modulus, -exact phase.
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